
7 AD-AI00 796 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/S 9/2
PRELIMINARY DESIGN AND IMPLEMENTATION OF AN ADA PSEUDO-MACHINE.C1W

I MAR 81 A R GARLINGTON
UNCLASSIFIED AFIT/GCS/MA/81M-I NLS,200IIIIIIIIIII
EEIIIIIIEIIEEE
IIEEEEEIIIIEEE
EIEEEEIIIIIEEE
IIIIEEEEEEIhI
Illllllllll
EhhEEEEEEEEIq

LEVEL 1

DTIC
S ELECTE

JUL 1 1981

UNITED STATES AIR FORCE D
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force BaseOhio

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

81-6 30 056

AFI T/ GCS/MA/ 81,1-1

Accession For

NTIS GRA&I -

DTIC TAR
Unannounced
Justification__

-Distribution/

_Availability Colau3
Avail i/I

Dist spc'cial

-PRELIMINARY DESIGN4 AND IMPLEMENTATION

OF AN ADA PSEUDO-MACHINEa

THESI S

/AFIT/GCS/MA/81M-1/ Alan _y'Garlintonf

/7)CAPT USAF

tr j i o,

Approved for public release; distribution unlimited.

kFIT/GCS/MA/81 -1

PRELIMINARY DESIGN AND IMPLEMENTATION

OF AN ADA PSEUDO-MACHINE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

by

Alan R. Garlington

Capt, USAF

Graduate Computer Science

March 81

Approved for public release; distribution unlimited.

PREFACE

Preface

The Department of Defense funded the development of the

Ada programming language in an effort to significantly

reduce costs for programmina embedded computer systems. As

the language evolved, it became apparent that its power

would be useful in a wide range of other pro~,ramming

applications as well. Since the Department of Defense has a

large number and wide variety of small computers, all of

which could benefit 6reatly from Ada, it seemed that a

portable compiler could be extremely valuable. One proven

implementation of a portable high-level lan6uage compiler is

UCSD PASCAL which generates code for a hypothetical

processor called a pseudo-machine. To run this code on an

actual computer requires a software program to simulate the

pseudo-machine. This approach allowed PASCAL to be

available on many different small computers. Investigation

of the same techniques used in this implementation would

possibly be the Key to providing a portable Ada compiler.

Initiating such research at AFIT would provide a test bed

for development of this concept and provide a basis for

further research in Ada and its programming environment.

This seemed like a good prospect for a thesis topic, since

both AFIT and the Air Force could benefit.

The preliminary reference manual for Ada was released

about the same time I started my first compiler-theory

ii

PREFACE

class. As time passed, my interest in both Ada and compiler

theory 6rew, as did my desire to do a thesis topic that

would combine both subjects. When Capt Roie Black and elaj

Alan Ross, AFIT professors, voiced interest in the design of

an Ada pseudo-machine, I felt that this would be the perfect

topic for me. Designing the pseudo-machine would require

integrating techniques from several areas in che

computer-science field. Compiler theory, data structures

and computer architecture are all intertwined, offering a

potentially-rewarding, learning experience.

4y initial stab at this topic was to design the

pseudo-machine and then build a test compiler to exercise

the design. This uncoupled development of the

pseudo-machine and the compiler turned out to be incorrect.

The process of defining a pseudo-machine for a language

is, in fact, closely coupled to the development of a

compiler for that language. Niklaus Wirth, desi-ner of

PASCAL, stated that the purpose of a pseudo-machine aas to

"keep the description of the compiler reasonably simple and

free from extraneous considerations of peculiar properties

of a real, existing processor (Ref 14:331)". If this is the

case, defining the Ada pseudo-machine without developing the

compiler would be difficult, since the success of the

pseudo-machine is measured by how well the machine supports

iii

PREFACE

the compiler.

Thus, the project was modified t,.) permit the parallel

development of the compiler with the definition of the

pseudo-machine, and the project's scope was reduced. The

new -oal became an integer-only implementation which

incorporated some of Ada's more interestin8 features, for

example, packages and tasKs. Additional constructs were

studied based on their estimated impact on the

pseudo-machine's architecture.

Throu-hout the project's development, several people

sacrificed their time to offer council, suggestions, and

materials. The time they invested immeasurably improved the

project's overall quality. Thanks to Capt Role R. Black,

advisor, who proposed the topic and helped'limit its scope.

His interest, encouragement and suggestions were invaluable.

Thanks to Major Dan Burton, currently assigned to the Air

Force Avionics Lab, who sponsored the project and allowed me

to use the lab's excellenL computer facilities. Thanks also

to my thesis-committee members, Lt Col Jim Rutledge and Maj

Alan Ross. Lt Col Rutledge's indepch knowledge of Ada proved

very valuable. He sacrificed numerous hours listening and

teaching, and he also composed several test programs to help

debug the project. Major Ross served as a thoughtful critic

who, in concert with Capt Black, identified the Ada

iv

PRE FACE

pseudo-machine as a)ossible thesis topic. Finally, I'd

like to thank my wife whose patience with a full-time

student and a baby boy (born durin8 my first quarter at

AFIT), was nothin6 short of miraculous.

vI

£A3LE OF CONTENTS

Table of Contents

1. Introduction 1

1.1 Jackground -- Ada's roots I
1.1.1 The problem that spawned a language 1
1.1.2 A solution in commonality 2
1.1.3 Ada's broadenin6 appeal 3
1.1.4 Ada and the small computer 7
1.1.5 Needed -- a portable compiler 6

1.1.5.1 Ene pseudo-code compiler 9
1.1.5.2 Advantages/Jisadvantages 10

1.2 Project overview 11

2. Project Description 13

2.1 Approach 13
2.2 Design considerations 14

2.2.1 Recursive subproorams 14
2.2.2 Taskin8 16

2.2.2.1 Ada's tasking tacility 17
2.2.2.2 Run-time requirements 21

2.3 Pseudo-machine ardhitecture 23
2.3.1 M lemory 2

2.3.1.1 Prograw memory 23
2.3.1.2 Stack memory 29 i,

2.3.2 Stack processors 32
2.4 Pseudo-machine instruction set 35

2.4.1 ielational operators 36
2.4.2 Integer (sinGle word) arithmetic operations 37

2.4.2.1 Single word loads and stores 37
2.4.2.2 Arithmetic operators 38

2.4.3 TasKing operators 39
2.4.3.1 ACTIVATE 39
2.4.3.2 CALLENTRY 41
2.4.3.3 ACCEPT 42
2.4.3.4 RELEASE 42
2.4.3.5 TERHINATE 43
2.4.3.6 ENTILOAD 43
2.4.3.7 ENT16TORE 44

2.4.4 1/0 Operations 44
2.4.4.1 SPUT 44
2.4.4.2 IPUT 45
2.4.4.3 1GET 45

2.4.5 Aiscellaneous Instructions 45
2.4.5.1 CALL 45
2.4.5.2 PAKiAASHIFT 46
2.4.5.3 RETURN 46

vi

TASLE OF CONTENTS

2.4.5.4 JAP 47
2.4.5.5 JLIPF, JAPT 47
2.4.5.6 INCT 47

2.5 The compiler 48
2.5.1 6ackoround -- Compilation 46
Z.5.2 LR(1) parsing. automaton 52

2.5.2.1 Construction 53
2.5.2.2 Parser structure 54
2.5.2.3 Parser operation 55

2.5.3 Semantic routines 56
2.5.3.1 Scanner 56
2.5.3.2 Semantic stacKs 57 K
2.5.3.3 Sample semantic routine 57

2.5.4 bymbol table and visibility 59
2.5.4.1 invir;nrnent stack 59
2.5.4.2 Stacking rules 59
2.5.4.3 Symbol-table routines 61
2.5.4.4 Visibility example 62

3. Recommendations 65

3.1 Improvements to the pseudo-maciiine 65
3.1 .1 mun-time space allocation 65
3.1 .2 System queues 66
3.1 .3 StacK-frame control daca 66
3.1.4 Implemencing exceptions 66
3.1.5 Implementin6 dynamic variables 67
3.1 .6 Enumeration 1/0 67
3.1 .7 Uata protection 60

3.2 Improvements to the compiler 6
3.2.1 Towards a finished product 66
3.2.2 For use as a tool 7u

BIBLIOGRAPHY 72

1 APPENDICES 73

1. DOD Commonality study 74

II. LR(1) Parsing automaton 77

III. User's guide 35

IV. Source listing 91

VITA 92

I

LIST OF FIGURES

List of Figures

Figure 2-1: Run-Time Space Allocation Example 15
Figure 2-2: Procedure Activation Xecord 16
Figure 2-3: Task Declaration 17
Figure 2-4: Accept Statement 13
Figure 2-5: Parent 4ita Nested Task 21
Figure 2-6: System Architecture 23
Figure 2-7: Correspondence of Resisters and Blocks 26
Figure 2-8: Sample TasK Frame 33
Figure 2-9: Truth Table for the inary, Relational 36

Operators
Figure 2-10: Trut'i Table for the Unary-Operator ZNOT 36
Figure 2-11: Parser-Structure Chart 54
Figure 2-12: AIorithm for Aodule Parse 55
Figure 2-13: Stacking Rules 60
Figure 2-14: Example Program for Visibility 62

Demonstration
Figure 2-15: Visibility Rules Demonstration 63
Figure 3-1: Tables for the LR(1) Parsing Automaton 30
Figure 3-2: &esult of the 'Shift, Ti' dove 01
Figure 3-3: Intermediate result of tne 'Reduce, 3' 82

"love
Figure 3-4: Final result of 'Reduce,3' Move 82
Figure 3-5: Acceptance of the Strin6 "JOHN EATS 3hLAD" 63

4

ABSTRACT

Abstract

This project involved defining an Ada pseudo-machine

and developing an Ada to pseudo-code test translator. The

translator's front-end incorporates a table-driven parser

that can parse the entire proposed-standard Ada language.

The translator's semantic routines allow integer data

objects, several control structures, procedures, functions,

packages and tasks. These routines generate pseudo-code

that is executed by an interpreter program included in the

translator. The interpreter constitutes a complete

description of the pseudo-machine whose architecture

consists of multiple, stack-oriented processors that access

a common memory. Interesting features of the project

include the hash-coded symbol table that supports Ada's

visibility rules and the pseudo-machine architecture that

supports Ada's tasking.

ix

INTRODUCTION

1. Introduction

Chapter one begins with background information on the

origin of the computer programming language Ada and with a

summary of the features which have resulted in its rapid

growth in popularity. The chapter concludes with a

description of how Ada can be implemented on a ricro or mini

computer and with an introductory descripcion of the thesis

project.

1.1 Background -- Ada's roots

Increasing software costs have forced the Department of

Defense to search for budget reducing strategies. An

outgrowth of this search was the development of a new

computer language with a soon to be familiar name, Ada. Its

introduction met with both opposition and enthusiasm, but

currently, most of the opposition is fading and Ada is

experiencing a broadening appeal.

1.1.1 The problem that spawned a language

Every year, more and more money is spent on computer

systems, despite precipitous drops in computer hardware

costs. These falling hardware costs have been matched by an

equivalent increase in software costs, and now, software

looms at the forefront as the major development expense.

The Department of Defese is not immune to this problem, and

it too must face the problem of rising expenditures.

INTRODUCTION

Within DOD, the major software expense is for

programming embedded computer systems, and more than 50% of

the software budget goes toward satisfying the demand for

such software (Ref 4:6). Why is programming embedded

systems so costly? A preliminary study showed that one of

the problems has been the plethora of special-purpose

languages and systems used to program them. The study

showed that a common language could save in excess of I

billion dollars a year (Ref 5). The data on which this

estimate is based can be found in appendix I.

1.1.2 A solution in commonality

To correct this problem, DOD pursued the goal of a

single, high-level computer language appropriate for

programming embedded systems and established the High Order

Language Commonality Program in 1975 to railroad the project

(Ref 3:i). The program's directors compiled a set of

requirements for the proposed language by circulating a

request for language requirements throughout the military,

civilian and industrial communities of the U.S. and, also,

throughout European and NATO countries. The submitted

requirements were integrated, refined and then returned to

the respondents for approval. After several such cycles,

the resulting set of requirements was deemed necessary and

sufficient for all DOD embedded computer applications.

2

INTRODUCTION

Several existing high-order languages were examined to

see if one satisfied the complete set of requirements, but

none did. Therefore, four contractors were funded to

develop a language which would meet the required

specifications. After this four-contractor

competitive-design effort, a single language emerged and was

named Ada. Currently, Ada stands at a major transition

point in its development, as emphasis shifts from the design

of the language to its introduction and use.

1.1-.3 Ada's broadening appeal

The major goal of Ada's design was to reduce costs for

embedded-computer software. While pursuing this goal, DOD

specified requirements for a working environment for the

language. These requirements are delineated in the

document: "STONEMAN, Requirements for Ada Programming

Support Environments", Feb 1980. The stated purpose of the

programming-support environment is to 'support the

development and maintenance of Ada applications software

throughout its life cycle, with particular emphasis on

software for embedded applications" (Ref 3:1). To meet this

goal, a host/target approach to software construction is

adopted. This approach entails developing programs for an

embedded target computer on a host computer that offers

extensive support facilities (Ref 3:8). The document goes

on to specify what support facilities the host system must

INTRODUCTION

have.

While this standard environment will do much to make

Ada a powerful and popular tool for programming embedded

systems, the language has features that have opened another,

perhaps-larger, market. This market is among system and

applications programmers who develop software for use on the

host processor.

Ada has several features that have stimulated this

interest. Some of the most interesting of these will be

discussed briefly. These include packages, tasks, separate

compilation and the promise of universality. More detailed

information can be found in the Ada reference manual (Ref

2).

Packages: Packages are a mechanism for isolating

logically related structures in the program text whether

they are subprograms, data types, variables, nested

packages or a combination of these. This mechanism clearly

distinguishes information that is accessible only within the

package from that which is accessible to the rest of the

program. Information accessible only within the package is

considered 'hidden' and cannot be altered or even accessed

outside the package. This provides the programmer with a

powerful tool for creating abstract data types whose

implementation details are completely hidden from the user,

4

I
INTRODUCTION

for writing modular programs with enforced module boundaries

and for writing programs that can be more easily verified

(Refs 2:7-1 - 7-11; 9:8-1).

Tasks: Tasks are Ada's construct for parallel

processing. A task is known to other tasis Ln the program

by a set of names called entries. When c:e task calls

another, one of these names must e specified.

Synchronization of the two tasks is achieved when the called

task accepts the call of that named entry. This mechanism

provides the programmer with a simple, but powerful, method

for specifying parallel activities that must communicate

(Ref 2:9-1 - 9-16).

Separate compilation: Ada supports separate

compilation as opposed to independent compilation. The

distinction between the two was first made by J.J. Horning

and is described in the preliminary reference manual. The

description is reproduced here for convenience.

Independent compilation has been achieved by most
assembly languages and also by languages such as
Fortran and PL/1. Compilation of individual modules
is performed independently in the sense that such
modules have no way of sharing knowledge of
properties defined in other modules.

Independent compilation is usually achieved with
a lower level of checks between units than is
possible within a single compilation unit. In
consequence, independent compilation came into
disrepute and was rejected by safety minded, early
typed language definitions such as Algol 68 and

5

INTRUDUCTION

Pascal. Fast compilation of the complete program
was often advocated by promoters of these languages
as a safe alternative to independent compilation.
Fast compilation, hovever, has its limits, and it
fails to answer the needs of confidentiality and
libraries.

Separate compilation, on the other hand,
reconciles type safety and the pragmatic reasons for
compiling in parts. It is based on the use of a
library file which contains a record of previous
compilations of the units which form a program (Ref
9:10-1).

In summary, independent compilation provides little or

no checking for compatability between individually compiled

modules. On the other hand, separate compilation provides

the same level of checking between individually compiled

modules as they would get if they were compiled together.

Universality: Ada holds the promise of being a

universally accepted standard language. The list of

benefits that could be derived from such a language would be

very long, and one can only hope that this will indeed come

to pass (Ref 4). DOD's mandate that Ada will be "the"

language for programming embedded systems is the foot in the

door for such a possibility. Hopefully, this door will open

completely as DOD and commercial interests cash in on the

language's powerful features.

Collectively, these features support the concept of

standard software components first espoused by M.D. Mcllroy

in 1969, and enthusiastically supported by Jean D. Ichbiah

6

INTRODUCTION

at the ACM SIGPLAN conference on Ada in 1980.

Over-simplifying, a software component refers to a

functional module that has been coded and verified. Such a

component could be "manufactured" by a specialty company and

then be compiled with other such components into software

catalogs. On the "consumer's" side, software developers

could refer to these catalogs and choose those components

needed for their project. Once delivered, the components

could be "wired" together to create the finished system.

Since the functional modules are already assembled, tested

and, possibly, guaranteed by the manufacturer, less time

should be necessary for system development and testing.

Ada's features have sparked the hope that standard

components may soon be a reality.

1.1.4 Ada and the small computer

A large, potential market for software components, and

thus for Ada, exists among micro and mini computer users.

However, these users must have Ada running on their machines

in order to use these components. Since small machines

generally cannot support an extensive environment, they must

have a specially designed Ada language environment tailored

to their capabilities.

Hosting Ada on small machines is a topic reminiscent of

the UCSD PASCAL effort where PASCAL, a language seemingly

7

... . ,, i - i II li... . F -- I i

INTRODUCTION

too onplex to host on a micro, was quite successfully

implemented. The excellent results achieved by the UCSD

PASCAL project served to motivate this investigation of the

same techniques as applied to Ada. The project reported in

this paper specifically deals with the concurrent

devei'pment of an Ada pseudo-machine and an Ada to

pseuao-code translator, with emphasis on the

pseudo-machine's architecture. Some of the results of the

project, namely the pseudo-machine definition and the

semantic routines from the translator, could serve as a good

starting point for the implementation of an Ada environment

on a micro-computer host. The following section describes

the pseudo-machine approach and then introduces the project

more fully.

1.1.5 Needed -- a portable compiler

The most important part of this micro/mini Ada

environment is the compiler. Since there is a variety of

processors in the micro and mini class, the compiler program

should be written incorporating techniques that enhance its

portability. A technique that achieves this, with excellent

results, is the pseudo-code compiler. In this technique,

the compiler generates code (pseudo-code) for a hypothetical

processor. This processor's instruction set is specifically

designed to make the compilation task easier and more

straight-forward than attempting to generate code for an

8

INTRODUCTION

actual processor. The pseudo-code is then executed by an i

interpreter program which runs on the actual processor. The

steps necessary to develop such a compiler are briefly

outlined below.

1.1.5.1 The pseudo-code compiler

The first step toward developing a pseudo-code compiler

is to write the Ada to pseudo-code compiler program in a

suitable language on a host processor. The resulting

program, called a cross compiler, accepts Ada source text as

input and generates pseudo-code for the hypothetical

processor as output. Now, a production-quality compiler is

written in Ada. This program is input to the cross compiler

and translated to pseudo-code. The output from this step is

pseudo-code for the production compiler. Now, all that is

needed to execute the compiler program is a pseudo-machine.

Since no pseudo-machines actually exist yet, a simulator

must be created. This may be done by writing a program that

accepts the pseudo-code as input and that accomplishes the

necessary actions. Such a program is sometimes called an

interpreter. With this approach, all that needs to be done

to install the Ada compiler on a new processor is to write a

relatively-simple, pseudo-code, interpreter program to run

on the processor.

9

4-

INTRODUCTION

1.1.5.2 Advantages/disadvantages

Since installing the compiler on another processor is

limited to writing a relatively-simple program, the goal of

easy portability is attained. All system software, e.g. the

editor, debugger, etc., should also be written in Ada and

compiled to pseudo-code, thus attaining the same portability

as the compiler.

Of course, running the interpreter program decreases

execution speed as compared to executing native machine

code. The trade off is speed for portability. However, the

popularity of current PASCAL pseudo-code implementations is

a testimony that, for most purposes, this degredation in

performance is acceptable to a wide market of users.

However, should performance be degraded to unacceptable

levels, speed can be improved by post processing the code

or, even better, by creating the hypothetical processor.

Post processing: Pseudo-code generated by the compiler

can be post processed to produce code for the target

machine. An optimizing, pseudo-code to target-machine

translator would eliminate the run-time, interpretation

penalty; thus increasing the program's execution speed.

Building the hypothetical processor: Building the

hypothetical processor eliminates any need for post

processing the pseudo-code to speed up execution.

10

4

INTRODUCTION

Pseudo-code generated by the compiler is native machine-code

for the hypothetical processor, and thus, no translation is

required. Western Digital Corporation used this technique

to build their PASCAL Micro-Engine by micro-programming an

LSI 11 chip set to emulate the UCSD PASCAL pseudo-machine.

The excellent result is a premium, high-speed, UCSD-PASCAL

implementation that executes on a micro/mini computer.

Now that some background information on pseudo-code

compiling has been covered, the thesis project will be

described. This project, while not directly involved with

building the finished compiler for an Ada pseudo-code

implementation, has laid the foundation for such an effort.

1.L Project overview

The project consisted of the concurrent development of

an Ada to pseudo-code translator and an Ada pseudo-machine.

First, a parser for the language was built using Lawrence

Livermore Laboratory's automatic parser generator and

Intermetric Inc.'s LR(1) Ada grammar (Refs 12, 13). Then,

language constructs were investigated beginning with

packages. Packages had no impact on the runtime

architecture of the pseudo-machine, but profoundly affected

the compiler's symbol table and symbol-table-access

routines. Separate compilation and its possible impact on

the structure of the symbol table was not investigated.

11

INTRODUCTION

Next, expressions were implemented followed by procedures

and functions. These features delineated the basic

requirements for the pseudo-machine, and a stack processor

was selected to meet those requirements. Finally, tasks

were investigated. Tasks added several operators to the

pseudo-machine's instruction set and prompted a

multi-processor architecture. The following chapter

describes each of the project's two parts: the

pseudo-machine and the compiler.

V

12

A

PROJECT DESCRIPTION

2. Project Description

This chapter begins by describing the approach to the

project and by discussing some of the design considerations

that prompted the resulting system architecture. Later

sections describe the pseudo-machine's architecture,

including its instruction set and describe the Ada to

pseudo-code compiler.

2.1 Approach

As mentioned before, the approach taken in this effort

was to develop an Ada compiler in parallel with the

pseudo-machine. Experience gained through this approach

showed that the compiler actually drove the design of the V
machine. As each Ada construct was implemented in the

compiler, a set of run-time actions became necessary to

carry out the required semantics of the construct. This set

of actions, where feasible, was included as a single

instruction in the machine's instruction set. Where this

was not practical, combinations of previously defined

instructions were used to implement the construct. In this

way, the instruction set for the pseudo-machine grew

specially tailored to the needs of the Ada language.

13

PROJECT DESCRIPTION

2.2 Design considerations

This approach uncovered two constructs that had major

influences on the architecture of the machine. These

constructs included the requirement for subprograms to be

recursive and the run-time requirements imposed by the

tasking constructs.

2.2.1 Recursive subprograms

When a compiler analyzes a subprogram in preparation

for code generation, the only information available to it

concerning local variable and object space requirements is

the space required for a single activation of that

subprogram. Since subprograms in Ada can be activated

recursively, the total number of times a procedure will be

called is not known until run time. Since the compiler

cannot allocate variable and object space for an unknown

number of subprogram activations, a run-time allocation

scheme is required. This scheme must allocate memory space

for each variable or object declared in a subprogram before

executing any of that subprogram's code. The system used in

the pseudo-machine is described below.

Ada subprograms, like those in other block-structured

languages, obey a last-called, first-completed calling

discipline. That is, the most recently called subprogram

must complete its execution before the caller resumes its

14

PROJECT DESCRIPTION

execution. Since space for variables and objects is

allocated just prior to the subprogram's execution and

deallocated immediately afterward, a stack can be used.

Consider the following example:

PROCEDURE MAIN IS
A : INTEGER;

BEGIN
A := 2;
PUT LINE (A);

END MAIN;

Figure 2-1: Run-Time Space Allocation Example

In this example, procedure 'MAIN' merely initializes

the local variable 'A', prints it and terminates. The

run-time actions necessary to accomplish this in the

pseudo-machine are:

1. Allocate stack space for the procedure's local

variable 'A'.

2. Allocate temporary storage for the constant 2.

3. Store this value in the space allocated to
variable 'A'.

4. Print the value of variable 'A'.

5. Deallocate the procedure's stack space.

When stack space is initially allocated to the

procedure, as in step one, additional space is also

allocated to provide storage for control data used by the

run-time system. The number of words required for control

15

PROJECT DESCRIPTION

information is fixed and is allocated before the procedure's

local variable space. In this paper, the first word

allocated to a procedure is referred to as the base of the

procedure activation, and the control data is referred to as

stack-frame control data. The space allocated to

temporaries, as in step 2, is accessed strictly as a stack,

and the last word allocated for temporary storage is called

the 'top of stack' or 'T' for short. This will be discussed

more fully in a later section.

Collectively, the stack-frame control data, the

variable and object space, and the temporary workspace, is

called a procedure activation record or a stack frame. The

layout of the stack frame for a typical procedure activation

is illustrated in figure 2-2. Please note that the stack

grows downward here and in all illustrations that will

follow.

2.2.2 Tasking

Before discussing the run-time requirements levied by

Ada's tasking facilities, a brief introduction to them is

necessary.

16

PROJECT DESCRIPTION

PREVIOUS ACTIVATIONS
BASE

CONTROL DATA

LOCAL VARIABLES

EVALUATION STACK
(TEMPORARIES)

.- T

UNUSED STACK SPACE

Figure 2-2: Procedure Activation Record

2.2.2.1 Ada's tasking facility

Tasks are the Ada construct used to specify code that

executes in parallel with the parent procedure. These

parallel tasks may execute totally independently, or they

may synchronize occasionally to pass information. The

mechanism these tasks use to synchronize and pass data is

described in the following paragraphs.

A task that accepts calls from other tasks has a set of

pre-defined names that it can be called by. These names are

called entries, and their declaration looks the same as a

procedure declaration. Figure 2-3 contains the declaration

of a task named 'A' that includes 2 such entries.

Task 'A' can be called by other tasks with the entry

names 'A.AI' or 'A.A2'. To call task 'A', the caller

17

7

PROJECT DESCRIPTION

TASK A IS
ENTRY Al (All IN INTEGER);
ENTRY A2 (A12 OUT MY_KIND);

END A;

Figure 2-3: Task Declaration

executes a call to the desired entry. Actual parameters of

the call must match the declaration's parameters in number

and type as they must in a procedure call (excluding

parameters with default values). This entry call looks

identical a procedure call, and might appear as:

A.A2 (Z)

where Z must be of type 'MYKIND'. The called task accepts

such a call by executing an accept statement for the called

entry. Continuing the example, such an accept statement

might appear as:

ACCEPT A2 (A21 : OUT MYKIND) DO

STATEMENTS

END A2;

Figure 2-4 Accept Statement

The region between 'DO' and 'END' in the figure is

called the accept body, and, in this region, the two tasks

18

PROJECT DESCRIPTION

are synchronized. During this rendezvous, the statements

comprising the accept body are executed while the calling

task is suspended at the point of call. After the

completion of the accept body, both tasks continue their

parallel execution. Now that the mechanism for

synchronizin6 parallel tasks has been described, the method

for passing data will be discussed.

Information may be passed between communicating tasks

in two ways; through entry parameters or through global

variables. The preferred way to pass information is by

referencing the entry parameters. In this technique, the

entry parameter acts like a local variable in the accept

body. Entry parameters, like procedure parameters, can have

a specified mode which can be 'IN', 'OUT' or 'IN OUT'

Thus, information passes into the called task via an actual

parameter corresponding to an 'IN' or 'IN OUT' formal

parameter, and passes out of the task via an actual

parameter correspondin, to an 'OUT' or 'IN OUT' formal

parameter. This method is safe since the two tasks have

rendezvoused and are in direct communication with each

other. The other technique for passing information between

tasks is by accessing global variables. There are no

guarantees with this technique, and the programmer must

implement control constructs and safeguards. Let the user

beware!

19

PROJECT DESCRIPTION

The chronology of the calling interaction between tasks

permits two possible scenarios (Ref 7:1). In the first

scenario, the calling-task's entry call precedes the

called-task's execution of an accept statement for that

entry. The second scenario is the opposite, where the

called task executes an accept statement for an entry and

then the caller executes the entry call. The required

run-time actions for each scenario are briefly discussed

below.

Call precedes accept: If the caller executes an entry

call and finds the called task unable to accept the call, it

enters itself in a wait queue associated with that entry.

Then it records the current value of its working registers

(its context) in its stack frame and releases its processor.

The scheduler then attempts to schedule the released

processor.

Accept precedes call: The task owning the entry

executes an accept statement and finds there are no callers.

It then sets a flag notifying other communicating tasks that

it is waiting for a call to that entry, records its context

and releases its processor. The scheduler then attempts to

schedule the released processor.

This brief introduction to Ada's tasking facility will

now be followed by a description of the run-time operations

20

PROJECT DESCRIPTION

required to implement these constructs. If more information

on tasking is desired, see the Ada reference manual (Ref

2:9-1 - 9-16).

2.2.2.2 Run-time requirements

In the pseudo-machine, an Ada task executes as an

object within a subprogram's activation record. As a result

of this, the stack space assigned to the parent must be

accessible to multiple processors. This is true because one

processor might require access to the variable/object space

allocated to the task object, while another processor might

require access to other areas of the parent's

variable/object space.

The stack space allocated to a task is formatted the

same as that of a procedure, except that the task has a

pre-established upper bound on the amount of space assigned

to it. This bound is determined by the compiler when the

program is compiled, but can be modified by a representation

specification for the task (Ref 2 : 13-3). Now, consider an

example showing the stackspace allocated to a task object

nested within its parent.

Notice that the nested task in figure 2-5 has the same

structure as the parent and is nested within the parent's

local variable space. Remember that the space allocated to

the nested task has defirite limits that are computed by the

21

i

PROJECT DESCRIPTION

= -PARENT.BASE
PARENT'S

CONTROL DATA

" - TASK.BASE

CONTROL DATA

LOCAL VARIABLES

EVALUATION STACK

PARENT.LOCALS- E TASK.T

..,__ _.... TASK.HIGHBOUND

EVALUATION STACK
a- PARENT.T

*A-PARENT.HIGUBOUND

Figure 2-5: Parent With Nested Task

compiler at compile time. If subprograms executing within

such a nested task recurse excessively, the space allocated

to the task will be exhausted and execution must stop. The

program would then have to be recompiled, this time

notifying the compiler that the nested task needs more

space. A better, more complicated, solution would be to

develop a run-time space allocation scheme to cover such

occurences. However, space is currently computed at compile

time only, and there is no run-time space allocation scheme.

22

PROJECT DESCRIPTION

An earlier section on recursive subprograms hinted

strongly that the pseudo-machine required a stack-oriented

processor, and the previous section on tasking hinted at

multiple processors. The following section will describe

the resulting combinatio0 which comprises the system

architecture.

2.3 Pseudo-machine architecture

The pseudo-machine consists of multiple, stack-oriented

processors accessing a common, partitioned memory through a

controller which resolves conflicts. The following diagram

illustrates this architecture.

LLJ F1

Figure 2-6: System Architecture

The figure illustrates 'n' processors accessing a

common, partitioned memory. The stack memory constitutes a

23

PROJECT DESCRIPTION

single stack that is shared among the processors, and the

program memory contains the code for a single Ada program.

The system also has a ready queue for tasks waiting to begin

or continue their execution. Associated with the ready

queue is a scheduler who assigns waiting tasks to idle

processors until exhausting the supply of either tasks or

processors. It is implemented as a procedure which is

called by some of the pseudo-machine's instructions.

The role of the scheduler can be summarized as follows.

When the pseudo-machine begins executing an Ada program,

there is only a single thread of control for the main

procedure. If that procedure spawns tasks, they are

initiated by an ACTIVATE instruction that enters the spawned

tasks in the ready queue and calls the scheduler. If these

tasks must suspend their execution, for example while

waiting for a rendezvous, they release their processor and

call the scheduler. The scheduler is also called when a

task terminates its execution. Briefly, the scheduler is

called when a task is activated, blocks or terminates.

Please note that the structure illustrated on the

diagram is logical only. The actual physical structure of

the system can be quite different as long as the logical

structure is preserved. Each of the 'n' system processors

is stack oriented, and their operation will now be

24

PROJECT DESCRIPTION

described.

Stack processors get their name from the way they

evaluate arithmetic expressions. They evaluate expressions

in post-fix, using a stack to store operands and

intermediate results. When evaluating such an expression, a

stack processor pushes each operand it encounters onto an

evaluation stack in its memory and uses each operator it

encounters as an instruction. When executing an

instruction, it assumes the operands are aiready on the

stack (This is true because of the properties of post-fix

evaluation.), and it removes the operands and pushes the

result back onto the stack. Since the processor knows where

the operands reside, and since it knows where to put the

result, the processor requires no addresses to execute such

an instruction. For example, the expression 2 * 3 + 9

becomes 2, 3, *, 9, + in post-fix, which translates to PUSH

2, PUSH 3, MULTIPLY, PUSH 9, ADD in stack machine

instructions. The result of the expression now resides on

top of the stack and is available for assignment to a

variable, comparison with other values or for whatever use

that can be made of an expression's result.

When a stack machine is used to implement a block

structured language, such as Ada, another stack-like feature

exists. Since procedure activations obey a last-in,

25

PROJECT DESCRIPTION

first-out (LIFO) discipline, stack space is allocated to

them in a LIFO manner. These space allocations and

deallocations are strictly stack-like, but within the space

of each allocation, words are accessed in a controlled but

hardly stack-like manner. Values may be removed from the

evaluation stack and transferred into the local variable

space, or removed from the local variable space and placed

on the stack or even stored within another procedure's

activation record. Additionally, control data can be

accessed or changed at random.

The stack processors in this project contain registers

to facilitate access to the data. These registers match

closely with the boundaries between the previously described

blocks of data contained in a procedure activation. To

describe these registers in a specific context, consider the

tesk activation in figure 2-7.

The first word of the activation record is marked by a

'BASE' register and the top of the evaluation stack is

marked by a 'T' register. Remember that the evaluation

stack grows downward toward the high boundary on the

diagram. The task's high boundary is initially marked by

the 'HEAP' register. However, the 'HEAP' register's primary

purpose is not just to mark the initial high boundary of the

task's stack space. Notice that the 'HEAP' register on the

26

PROJECT DESCRIPTION

BASE -BASE
CONTROL DATA

LOCAL VARIABLES

EVALUATION STACK
T TOP OF STACK

UNUSED STACK SPACE

HEAP -

DYNAMIC VARIABLES
HIGH BOUNDARY

Figure 2-7: Correspondence of Registers and Blocks

illustration has already moved away from the high boundary. K

The primary purpose of the 'HEAP' register is to mark

the top of the dynamic heap. The dynamic heap provides

storage space for program variables created at run time,

like those created dynamically by the 'NEW' operator in

PASCAL. As these variables are created, space is allocated

to them from this heap structure. On the previous diagram,

the heap grows upward toward =he stack.

Note that the boundary between the control data and the

task's local variables/objects is not marked by a special

register. The reason for this is that control data is of

known length at compile time, and therefore, the offset to

the first local variable can be computed.

27

PROJECT DESCRIPTION

Now that some background information on stack

processors has been covered, more detailed information on

the project's pseudo-machine can be presented.

2.3.1 Memory

The memory contains two parts, the stack memory and the

program memory. As mentioned previously, any system

processor must be able to access any word in stack memory.

The following section shows that this is also required of

the program memory.

2.3.1.1 Program memory

Program memory contains only the instructions to be

executed by the processors. No variable space is allocated

within program memory, and only read operations are

performed on it. Thus, an actual implementation could hold

any program in a read-only memory.

Multi-tasking requires the program memory to be

accessible to multiple processors. This is true because

Ada's visibility rules permit procedures to be global to

multiple tasks, and therefore, two tasks executing in

parallel could call a single procedure at the same time.

Making duplicate copies of the code is also a possibility,

but this is less straight-forward.

I
28

PROJECT DESCRIPTION

2.3.1.2 Stack memory

Stack memory contains space for stack-frame control

data, program variables, temporaries, and dynamically

allocated variables.

Stack-frame control data: A stack frame is allocated

upon entrance to a block, to a subprogram or upon

initialization of a nested task object. This stack frame

contains the following information:

1. The static link: The static link records the
textual nesting level of the program as it was
originally written. It is used for run-time
addressing of variables and objects.

2. Dynamic link: The dynamic link marks the base of
the calling procedure's activation record. It is
used to deallocate stack space upon completion of
the procedure's execution.

3. Program counter: Storage space is provided for
the current value of the processor's working
registers. This is necessary since a task may
have to give up its processor at any time. For
example, a higher priority task may pre-empt this
task, forcing it to release the processor. The
current values of the processor's working
registers must then be stored so that the
interrupted task can resume its execution at a
later time. The 'program counter' slot is used
to store the current value of the 'PC' register
should this occur.

4. Task flag: The task flag is a Boolean variable
that indicates whether or not the stack frame is
a task. It is used to indicate task boundaries
when processing run-time exceptions raised in the
program.

5. Active nested task counter: The active nested
task counzer is used to record the number of
nested tasks currently active in the given stack

29

PkOJECT DESCRIPTION

frame. The definition of the Ada language states
that a block cannot be exited until all nested
tasks have completed tneir execution (Ref 2 :
9-5). The counter is used to enforce this rule
at ru., time.

6. Waiting flag: The waiting flag is a Boolean
variable that indicates whether or not the parent
task is waiting to terminate its execution. For
example, if the parent reaches the end of its
code, and it still has active nested tasks, it
must wait for them to complete. It then sets the
waiting flag to true, stores the current values
of its processor's working registers, and
releases its processor.

7. Exceptions: Ada allows controlled error
processing at run time through its exception
facility. This control word is currently not
used since exceptions are not implemented. When
exceptions are implemented, the word will be used
to record information on exceptions handled
within the block. More control words will be
required to accomplish this.

8. Priorityt This word is a run time record of the
task's priority.

9. Top of stack: The top-of-stack control word
provides temporary storage for the processor's
'T' register.

10. Base: The base control word provides temporary
storage for the processor's 'BASE' register.

11. Link: When a task is entered into a queue, the
link control word points to the next task waiting
in the queue. A single link field is sufficient
since it is a characteristic of the language that
a task can be waiting in only one queue (Ref 7
11-44).

12. Heap: The heap position provides temporary
storage for the processor's 'HEAP' register.

13. Data lock: This Boolean variable indicates
whether or not the task frame is currently being
accessed by another task. It is used to limit
access to the stack frame control data to a
single processor at a time. This word is

30

PROJECT DESCRIPTION

currently not accessed by any of the
pseudo-machine instructions. This deficiency
needs to be addressed.

14. Caller: When a called task executes an accept
statement for a particular entry, a pointer to
the base of the accepted caller is stored in this
slot. This facilitates accessing the caller's
top of stack to retrieve actual parameters during
an entry call and also facilitates restarting the
task upon completion of an accept body.

15. Return: This control word is used to record the
return value of the program counter durin6 a
procedure call.

16. Entry: This word records the number of entries
declared in the current activation, and is used
to compute the amount of space required for entry
frame control data. The instructions that use
this control word assume that the entry frames
are allocated immediately following the 'entry'
control word. See paragraph 2.4.3.1 for an
explanation of the structure and operation of the
entry frame.

Program variables: The compiler allocates space for

variables and objects after allocating space for the stack

frame control data. Since the stack frame requires 16

words, the first word available for a local variable or

object is the 17th word on the stack, if there are no task

entries declared.

Temporaries: Temporaries are allocated as required

during the evaluation of an expression. For example:

A :- A + A

could translate to:

31

PROJECT DESCRIPTION

LOAD A -- The value of A is pushed on the stack
-- thus allocating the first temporary.

LOAD A -- The value of A is pushed, now 2 temporaries
-- are allocated.

ADD -- The two operands are popped and the value
-- of A + A is pushed. Now, only 1 temporary
-- is in use.

STORE A -- The stack is popped, and the value is stored
-- at the address for A. Now, no temporaries
-- are in use.

LOAD, ADD and STORE are descriptive mneumonics and have
the meaning described in their associated comments.

2.3.2 Stack processors

Each processor has 5 working registers: a program

counter (PC), an instruction register (IR), a base register

(BASE), a top of stack register (T), a heap pointer (HEAP)

and a status register (STATUS).

1. PC The program counter is a pointer to words in
the program memory. It indicates the next
instruction that the processor will execute.

2. BASE The base register is a pointer to words in
the stack memory. It indicates the first memory
word of the stack frame of the currently
executing subprogram or task.

3. IR The instruction register contains the
instruction that the processor is currently
executing.

4. HEAP The heap register is a pointer to words in
tNh stack memory. It indicates the top of the
dynamically allocated memory space.

5. T The top of stack register is a pointer to words
in the stack memory. It indicates the top of the
stack space of the currently executing subprogram

32

PROJECT DESCRIPTION

*or tasK.

6. STATUS: The status register contains a bit that
indicates whether or not the processor is busy or
idle, and a field that points into the stack
memory, called CURRENTJOB. This field must be
the same size as the processor's other working
registers, since it indicates the base of the
currently executing task. The interpreter program
requires an additional piece of information for
multiple processor simulation, and this is also
contained in the status register. This
information is used to limit the number of
instructions executed by a processor before it
returns control to the supervisor. The
supervisor then selects the next processor whose
status is 'BUSY' and allows it to work on its
assigned task. Thus, the supervisor serves to
timeslice the actual processor among the
simulated processors. For more information, see
the code listing for the interpreter in appendix
IV.

The following figure illustrates the configuration of a

stack processor working on a task.

Note that the BASE, T and HEAP registers point into the

stack space and indicate the first word in the stack frame,

the top of the evaluation stack and the top of the

dynamically allocated variable space, respectively. The

instruction register holds the instruction that is currently

executing, and the program counter points to the next

instruction that will be executed. Finally, the STATUS

register contains information necessary for

multi-processing, and also points to the base of the task.

Note that this diagram illustrates a task that has not

called a subprogram, since the BASE register is equal to the

33

PROJECT DESCRIPTION

BASE - -- CURRENTJOB
STACK FRAME
CONTROL DATA PC next instruction

IR current instruction
LOCAL VARIABLE

AND STATUS : busy
OBJECT SPACE active task ptr

EVALUATION STACK

T -

HEAP
DYNAMIC VARIABLES

S-TASK HIGHBOUNDARY

Figure 2-8: Sample Task Frame

base of the task object, marked by the CURRENTJOB register.

If the task had called a single subprogram, the base

register would point to the first word in the unused stack

space (the first word of the new procedure activation),

while CURRENTJOB would retain its position marking the base

of the task.

Now that the architecture of the pseudo-machine has

been discussed, the instruction set of the machine will be

presented.

34

PROJECT DESCRIPTION

2.4 Pseudo-machine instruction set

The instruction set currently contains operations tnat

are specifically tailored to a subset of the Ada language.

The subset is described in the user's guide in appendix Iii.

The currently implemented instructions can be divided into 5

classifications: relational operators, integer or single

word arithmetic operators, tasking operators, I/O operators

and miscellaneous operators. First, the instruction format

will be described.

Each instruction contains three fields of information:

the operation code field, the level field and the address

field. The operation code field contains the name of the

specific operation to be performed, and -he level and

address fields provide data necessary to perform that

operation. If the level and address fields are not

sufficient to contain the data required by the named

operation, additional data words may follow that

instruction. The following discussion of the operators does

not specify the fields where such data is stored, but only

lists the additional data required. Additional details may

be obtained by reading the interpreter source listing in

appendix IV.

35

PROJECT DESCRIPTION

2.4.1 Relational operators

The relational operators, EQUAL, GTR, GTREQ, LESS,

LESSEQ, NOTEQ, ZXOR, ZAND and ZOR are binary operators which

require no additional data for their operation. The two

operands are assumed to reside on top of the temporary

stack. (Boolean operands in the current implementation are

not packed and require an entire word on the stack.) At run

time, operands are popped from the stack and evaluated

according to the indicated operation. A Boolean result is

pushed back on the stack as defined by the following table.

S[T-li S[T] EUAL GTR GTREQ LESS LESSEQ NOTEQ ZXOR ZAND ZOR

Figure 2-q: Truth Table for the Binary, Relational Operators

ZNOT is a unary operator in this classification. The I

operand must be Boolean, and it is assumed to reside on top

of the stack. ZNOT pops the stack and pushes the operand's

opposite Boolean value.

A 1

1

Figure 2-10: Truth Table for the Unary-Operator ZNOT

36

4

PROJECT DESCRIPTION

2.4.2 Integer (single word) arithmetic operations

This classification contains single-word loads and

stores, the binary operations, +, -, /, * and MOD, and the

unary operator NEGATE.

2.4.2.1 Single word loads and stores

Operators exist for loading and storing variables and

for loading constants.

Single-word loads and stores: The additional data

required for load and store operations is the location of

the variable whose value is to be loaded or the destination

of the variable whose value is to be stored. As previously

stated, the compiler cannot generate a 'hard' run-time

address for a variable at compile time. However, since the

storage space required by a single activation of a procedure

is known, variables can be assigned locations relative to

the beginning of the procedure's stack frame. Thus, at run

time, a variable can be specified by providing its offset

from the base. However, there is one complication.

Ada's visibility rules, as those of most other block

structured languages, allow variables stored in other

procedure activations to be accessed by the active

subprogram. Thus, it is also necessary to specify which

"base" the offset is relative to. The compiler provides

this information as additional data with the instruction.

37

PROJECT DESCRIPTION

The single word loads and stores include the operators

ILOAD and ISTORE. The operator ILOAD uses the additional

data provided with the instruction to retrieve a variable

from the variable storage area. Then it pushes the value on

the evaluation stack. The operation ISTORE pops the stack

and stores the value in the location specified by the

additional data.

Loading constants: ILOADCONST is the operator for

loading a constant value onto the evaluation stack. The

additional data required by ILOADCONST is the value of the

constant to be loaded. ILOADCONST takes the specified value

and pushes it on the stack.

2.4.2.2 Arithmetic operators

The binary arithmetic operators + (IADD), - (ISUB), /

(IDIV), * (IMULT), IMOD, and IREIM assume that their operands

reside on top of the stack. These operators all work

similarly by removing two operands, applying the operation

and pushing the result. The unary arithmetic operator,

INEGATE, pops the stack and pushes the integer with the

opposite sign.

38

PROJECT DESCRIPTION

2.4.3 Tasking operators

The tasking operators include ACTIVATE, CALLENTRY,

ACCEPT, RELEASE, TERMINATE, ENTILOAD and ENTISTORE. Before

considering the operation of these, a brief review of Ada's

tasking facility might be desired. See section 2.2.2.1.

The additional data provided with these instructions is

computed by the compiler at compile time. When compiling a

task, the compiler computes the space required and allocates

it within the local variable space of the task's parent.

Other data, concerning the number of entries, priority and

initial values for a task's HEAP, BASE, T, etc., are also

computed and are available as additional information for the

tasking operators.

2.4.3.1 ACTIVATE

The parent task executes the ACTIVATE instruction to

initialize the stackframe of one of its nested tasks.

Additional information provided with the instruction

includes the nested task's base pointer, the heap pointer, a

pointer to the task's code, the initial stack top, the

task's priority and the number of entries in the task. The

base, heap and initial stack top pointers are not absolute

addresses but are relative to the base of the parent. The

parent uses this information to compute absolute inttial

values for each of the orocessor's registers. The initial

39

PROJECT DESCRIPTION

values for the tasK's static and dynamic links are also set,

and each entry declaration in the nested task is allocated

space necessary for _ts control. This control data for the

entry declaration is called an entry frame in the rest of

this paper. The following paragraph describes the data it

contains.

Three items of information are necessary for the

control of an entry. The first item is a Boolean variable,

referred to as the gate, which is used to record thu status

of the entry. If the task ownin. the entry is waiting to

execute an accept statement for that entry, the gate is

opened; otnerwise, it is closed. The second item is a

pointer to the code which is used to record the location of

the code of the currently executing accept body. This is

used only during the execution of a select statement, which

has not been implemented in the translator. Currently, this

item of information is not referred to in any of the

implemented instructions. The final control word serves as

a queue head pointer for tasks calling the entry. The

pointer actually points to the stack frame of the first task

waiting in the queue. Other tasks in the queue are chained

together via the link field in their stack-frame control

data.

In addition to allocating and initializing the entry

40

PROJECT DESCRIPTION

space, the parent initializes tne rest of the stack frame

and enters the nested task in the ready queue. After all

tasks nested within the parent are initialized, the

scheduler is called, and the tasks are assigned processors,

if available.

2.4.3.2 CALLENTRY

The calling task executes the CALLENTRY instruction

when it wishes to communicate with another task. Data

included with the instruction includes the number of entries

in the called task and the particular entry being called.

First, the caller finds the appropriate entry frame in the

called task's stack frame and enters itself in the wait

queue for that entry. The caller then checks the entry sate

to see if it is open or closed.

If the gate is open, the called task has previously

executed an accept statement for this entry and found no

callers waiting. (In response to this situation, the called

task would have opened the gate, stored its context and

released its processor. See paragraph 2.4.3.3, the ACCEPT

operator.) In the pseudo-machine, the task owning the entry

executes the accept body, so the calling task must awaken

the suspended, called task. It does this by entering the

task in the ready queue and by callin8 the scheduler. The

caller also releases its processor, waiting for completion

41

PROJECT DESCRIPTION

of the accept body.

If the gate is closed, the called task is not waiting

for a call to that entry. In this situation, the caller

merely adds itself to that entry queue, and releases ifs

processor.

2.4.3.3 ACCEPT

The called task executes the accept instruction when it

is ready to communicate with a caller. Additional

information necessary to execute an ACCEPT statement is the

name of the entry being accepted. First, the appropriate

entry frame is checked to see if any tasks are in the queue.

If tasks are waiting, the first one is removed, and the

appropriate accept body is executed. If no tasks are

waiting, the called task opens the appropriate entry's gate,

stores its processor's context, releases its processor and

calls the scheduler.

2.4.3.4 RELEASE

The called task executes a release instruction after

completing an accept body. RELEASE restarts the parallel

execution of the calling tasK by returning it to the ready

queue and calling the scheduler. No additional information

is required by RELEASE, because a pointer to the caller is

stored at a known offset in the stack-frame control data.

42

PROJECT DESCRIPTION

2.4.3.5 TERMINATE

A nested task executes a terminate instruction at the

end of its execution. First, the terminating task notifies

its parent that its execution is complete and checks to see

if the parent was waiting for ics termination. If so, the

nested task enters its parent in the ready queue.

In either case, whether the parent was waiting or not,

the nested task releases its processor and calls the

scheduler. No additional information is required by

TERMINATE since the nested task can locate the base of its

parent, and since the parent's control data is stored at

known offsets from its base. That is, TERMINATE is able to

locate all the information it needs within the parent's

stack frame.

2.4.3.6 ENTILOAD

The called task executes an ENTILOAD instruction only

within an accept body when referencing a entry's formal

parameter. The actual parameter corresponding to this

formal parameter is retrieved from the caller's stack and is

pushed on the called task's stack. Additional information

required is the address of the actual parameter with respect

to the calling task's 'T' register.

43

PROJECT DESCRIPTION

2.4.3.7 ENTISTORE

The called task executes an ENTISTORE instruction only

within an accept body when assigning a value to an entry's

formal parameter. A value is popped from the called task's

stack and stored within the zallin6 task's stack frame at

the location of the corresponding actual parameter.

Additional information required is the address of the actual

parameter. This address is an offset with respect to the

calling task's 'T' register.

2.4.4 I/0 Operations

The input-output instructions include operators for

writing strings (SPUT) and integers (IPUT) to the output

file, and for reading integers (IGET) from the input file.

2.4.4.1 SPUT

Additional information required by the operator SPUT

includes a line-feed Boolean that indicates whether or not a

carriage return and a line feed is to be written on the

output file, the number of characters to print and the

character data itself. SPUT writes the indicated number of

characters to the output file, and then, if the line-feed

Boolean is true, it generates a carriage return/line feed.

44

PROJECT DESCRIPTION

2.4.4.2 IPUT

Additional information required by the operator IPUT is

the line-feed Boolean. IPUT pops a word off the stack and

writes the ASCII equivalent of the value to the output file.

If the line-feed boolean is true, it generates a carriage

return/line feed.

2.4.4.3 IGET

IGET reads a string of ASCII digits, delimited by a

blank, from the input file, converts them to an integer

value and pushes it on the evaluation stack. No additional

information is required.

2.4.5 Miscellaneous Instructions

The miscellaneous instructions include operators to

call a subprogram or function (CALL), to shift actual

parameters in preparation for a function call (PARAMSHIFT)

and to return from a call (RETURN). Other operators in this

category include the absolute and conditional jumps (JMP,

JMPF, JMPT) and an operator to increment the T register

(INCT).

2.4.5.1 CALL

The calling subprogram executes a CALL instruction to

set up an activation record for the called subprogram. The

instruction initializes the static and dynamic links, stores

the proper return address and initializes other information

45

PROJECT DESCRIPTION

within the stack frame. Additional information required is

data to set the static link and a pointer to the code for

the called subroutine.

2.4.5.2 PARAMSHIFT

Additional information required by the PARAMSHIFT

operator is the number of parameter words to shift and the

shift distance. The calling subprogram executes this

instruction only when calling a procedure to allocate space

on its evaluation stack for the return variable. The actual

parameters are shifted upward on the stack the number of

spaces indicated by the additional information.

2.4.5.3 RETURN

The called subprogram executes a RETURN instruction

after completing its execution. If the called subprogram

has no active nested tasks, it deallocates its stack space

by resetting the T and Base registers and loads the return

address into the program counter. If nested tasks are still

active, the called subprogram cannot return; so it stores

its context, releases its processor and calls the scheduler.

No additional information is required to execute a RETURN

instruction.

46

PROJECT DESCRIPTION

2.4.5.4 JMP

Additional data provided with the JMP operator is the

destination address. JMP merely loads this address into the

program counter so that the next instruction executed will

be the one specified in the instruction.

2.4.5.5 JMPF, JMPT

Additional information provided with the conditional

jump operators is the destination address. Both JMPF and

JMPT pop a single operand from the stack and test its

Boolean value. If the operand is false, JMPF loads the

program counter with the destination address so that he

next instruction executed will be the one specifiek . JMPf

does just the opposite, transferring control onl.y if the

Boolean value is true.

2.4.5.6 INCT

Additional information provided with the instruction is

the number of words to increment the T register. INCT adds

the number provided to the current value of the T register.

This completes the description of the pseudo-machine's

instruction set and also completes the description of the

over-all design of the pseudo-machine. If more detailed

information is desired, please refer to the interpreter

listing in appendix IV. Now the project's second major

product, the Ada test compiler, will be discussed.

47

PROJECT DESCRIPTION

2.5 The compiler

A compiler must recognize high level language

constructs and translate them into equivalent machine level

instructions. This section first considers the problem of

translation and then describes the recognizer used in the

Ada test compiler. Finally, the semantic routines that

accomplish the translation are discussed.

2.5.1 Background -- Compilation

Before describing the project's test translator, a

brief introduction to the compilation process will be

presented. The emphasis will be on the problem raced by the

translator, rather than on how the translation is

specifically accomplished. This problem will be described

by postulating the existance of a simple machine and a high

level language and by using these tools to illustrate the

compilation task.

The postulated machine: The postulated machine is a

stack oriented machine that performs operations on operands

previously placed on a stack. The machine described here is

actually a subset of the PL/O machine described by Niklaus

Wirth in his book Algorithm's + Data Structures - Programs

(Ref 14 : 331-336). Briefly, the machine's instructions are

stored in program memory and are executed in sequential

order unless the order is modified by an instruction. The

48

PROJECT DESCRIPTION

instruction set consists of the following 7 instructions.

1. LOD A: LOD A places the variable named 'A' on the
stack.

2. LDC X: LDC X places the value 'X' stored in the
instruction on the stack.

3. STO A: STO A saves the variable named 'A' in
memory.

4. ADD: ADD removes two operands from the top of the
stack and adds them together. The result is
pushed on the stack.

5. CHECK <: CHECK < removes two operands from the
top of the stack. If the second operand removed
is less than the first, then the value TRUE is
pushed, otherwise, the value FALSE is pushed.

6. JMP X: JMP X causes the machine co execute the
instruction at location X next.

7. JMPF X: JMPF X removes an operand from the top of
the stack. If its value is FALSE then the
machine executes the instruction at location X.

The high-level language: The postulated high-level

language consists of the single sentence:

IF <CONDITION> THEN <STATEMENT> ELSE <STATEMENT>.

The three words IF, THEN and ELSE give this sentence

its structure. The word IF signals that a conditional

statement will (or should) follow, and the words THEN and

ELSE signal that a statement follows. Furthermore, the

statement following THEN is to be done only if the

conditional statement is true, and the statement following

49

PROJECT DESCRIPTION

ELSE is to be done only if it is false.

The translation: The specific example to be translated

to hypothetical machine code is:

IF A < B THEN A := A + 1 ELSE B := B + 1.

In this sentence, A and B are variables that are assumed co

have been initialized to some value, ':=' is an assignment

operator, '+' is an addition operator and '1' represents the

decimal number one.

The compiler's translation problem is similar to the

problem faced by a human interpreter. The interpreter must

cake a sentence in the source language and create a sentence

with the same meaning in the target language. Similarly,

the compiler program must translate the meaning of a

sentence written in a high-level language to a sentence with

the same meaning in the machine's language. However, there

is a difference between this translation problem and the

human interpreter's problem. When translating between human

languages, the interpreter is usually working with two

languages of approximately the same expressive power, where

a sentence in one language will become an equivalent

sentence in the other language. In contrast, the compiler

is working with two languages with vastly different

expressive powers, where a sentence in a high-level language

50

PROJECT DESCRIPTION

may translate to hundreds of sentences in machine language.

Thus, the compiler's goal is to provide a translation which

preserves the meaning of a high level language sentence

given the limited set of resources at the machine level.

There are several ways that a compiler can recognize a

high level language construct, but these methods will not be

discussed here. It is merely assumed that the compiler can

recognize one. Once the construct is recognized, the

associated meaning is known, and the compiler can issue

machine language instructions which preserve that meaning.

The sequence of code the compiler would generate to preserve

the meaning of the statement

IF A < B THEN A := A + 1 ELSE B := B + 1

is:

LOD A --load variable A
LOD B --load variable B
CHECK < --remove A and B from the stack

--and replace with the value of A < B
JMPF, FALSEPT --if the value on top of the stack is

--false, then go to label FALSEPT
LOD A --begin true part
LDC 1 --load the constant value 1
ADD --pop the two operands and push the sum
STO A --store the top of stack value in

--the location assigned to variable A
JMP END --jump over the false part

<<FALSE PT>>
LOD B --begin the false part
LDC 1 --load the constant value I
ADD --pop two operands and push their sum
STO 8 --store the top of stack value in

-- the location assigned to variable B
<<END>> --end of translation

51

PROJECT DESCRIPTION

The reader should verify that this translation is

correct. That is, assure that the defined meaning of the

high level language construct is preserved in the

translation to machine instructions. Now, with this example

as background, the Ada to pseudo-code translator developed

in the project will be described. The first topic to be

discussed is the mechanism that recognizes high level

language constructs, the LR(1) parsing automaton.

2.5.2 LR(1) parsing automaton

The LR(1) parsing automaton is a bottom-up,

finite-state machine whose operations are directed by a set

of language specific tables. For an introduction to LR(1)

parsing see Appendix II.

The specific system used to build the parser was the LR

package from Lawrence Livermore Laboratory (Refs 12 ; 13).

This system is written in ANSII standard FORTRAN and

consists of an automatic parser generator and a parser

skeleton. Since the project was written in PASCAL, the

parser skeleton had to be translated, and the cabular data

output from the automatic parser generator had to be

reformatted. The following paragraphs describe the

construction of the parser, its structure and its operation.

52

PROJECT DESCRIPTION

2.5.2.1 Construction

Construction of the parser required inputting an LR(1)

grammar into the automatic parser generator, inserting the

resulting tables into the parser skeleton, and writing a

lexical analyzer for Ada.

The automatic parser generator: The automatic parser

generator constructs the language specific tables that

control the operation of the automaton. An LR(1) grammar

for the subject language, in this case Ada, is input to the

generator, and a grammar analysis and a set of tables are

produced. The grammar analysis consists of a sorted listing

of the vocabulary, a formatted listing of the LInguaoe

productions and a human readable version of the resulting

finite-state control for the parser. The set of tables is a

machine readable version of the finite-state control and is

in the proper format for insertion into the parser skeleton.

The parser skeleton: The parser skeleton is also

writ.en in FORTRAN 66 and consists of a set of routines that

interpret the tables generated by the automatic parser

generator. The package consisting of the parser skeleton

and the tables requires the addition of a lexical analyzer

to produce an operating parser. The lexical analyzer

(scanner) scans the input file, isolates tokens and returns

that token's reference to the parser. Collectively, the

53

PROJECT DESCRIPTION

parser skeleton, the tables and the scanner comprise the

core of the compiler program.

Advantages: Using the LR system provides three major

advantages. First, the parser can be constructed quickly

with the assurance that the final results will parse the

grammar correctly. Second, the grammar can be changed

relatively easily, if necessary. Finally, the resulting

program is space efficient and modular. The following

paragraph describes the program's modular structure.

2.5.2.2 Parser structure

The following figure contains a chart which describes

the structure of the parser using a technique described by

G. L. Myers in his book Composite Structured Design (Ref 11

13). The figure consists of a network of modules arranged

in levels, with a module's position determined by the

calling dependencies between it and the other modules. The

module at the top of the diagram is named PARSE. Module

PARSE calls four subordinate modules, named FINDREDUCTION,

DOREDUCTION, FINDTRANSITION, and DOTRANSITION. When PARSE

calls FINDREDUCTION, it provides module FINDREDUCTION with

information concerning the current state and the current

look-ahead symbol. Upon return, FINDREDUCTION provides

PARSE with a production number. These data flows are

indicated on the diagram by a number, and the specific data

54

PROJECT DESCRITION

SEMANTIC FIND GET
TANSITION [SYMBOL .

IN OUT
I Current state and token Production #
2 Production #, Stkptr New state #, Stkptr
3 Current state and token New state #
4 New state .,, Stkptr Stkptr, Current state

Token description
5 Production i, Stkptr
6 Stack[stkptr].state, New state #

Left-hand side (production #)
7 -Token description

Figure 2-11: Parser-Structure Chart

passed is found in the chart at the bottom of the figure.

The remainder of the diagram may be interpreted in zhis same

way.

2.5.2.3 Parser operation

The controlling module, PARSE, repeatedly executes a

series of statements until it transitions to its final

state. The following algorithm describes PARSE's actions.

To begin, PARSE calls FINDREDUCTION to see if any

reductions exist. If a reduction can be done, module

DOREDUCTION is called, and PARSE goes back to repeat the

55

PROJECT DESCRIPTION

REPEAT
Check to see if a reduction is possible while in e
current state with the current look-ahead token.

If reduction is possible: Do the reduction.
If reduction is not possible:

Check to see if a transition is possible whiLe in
the current state with the current look-ahead token.

If transition is possible: Do the transition.
If transition is not possible: Syntax error - source.

UNTIL current state = final state.

Figure 2-12: Algorithm for Module Parse

loop. If no reduction can be done, PAz-SE calls

FINDTRANSITION to see if any transitions exist. If a

transition can be done module DOTRANSITION is called and

PARSE goes back to repeat the loop. If no transition can be

done, PARSE has detected a syntax error. This sequence

continues until the parser transitions to the final state.

2.5.3 Semantic routines

This section traces the flow of semantic information

throughout the translation process. Semantic information is

initially collected by the scanner and stored on semantic

stacks. This information may eventually be transferred to

the symbol table as directed by the semantic routines.

2.5.3.1 Scanner

SCANNER's function is to find the next lexical item in

the input file. After finding it, the scanner also

associates a certain semantic meaning with that token. For

example, an identifier is returned to the parser as

56

PROJECT DESCRIPTION

(*identifier*, pointer to symbol table entry, ASCII

representation). For parsing purposes, the only significant

information is that the next token is an *identifier*. The

semantic routines use the remainder of the information to

determine whether or not tnis identifier is correctly used

in the particular context.

2.5.3.2 Semantic stacks

The parser maintains 2 parallel stacks, one to store

the next token and another to store the current state. In

addition to these, various other stacks are maintained to

store data associated with the stacked token. These stacks

are called the semantic stacks. For example, additional

semantic stacks can be used to store a pointer to the

token's symbol table entry, to store its ASCII

representation, its integer, real or character value or to

retain any other information that might be required to

establish the token's meaning. The semantic routines then

use this information to determine if the token is proper for

the given context.

2.5.3.3 Sample semantic routine

,hen DOREDUCTION calls SEMANTIC, it tells SEMANTIC

which particular construct it has recognized in the input

file. F'or example, assume that module DOREDUCTION has

called SE:ANTIC with production number 289. This tells the

57

PROJECT DESCRIPTION

semantic module that production number 289 has been isolated

in the input and that the production's components have been

assembled on the stack. Suppose production number 289 is

defined as follows:

<PARAMETER DECLARATION> : : <ID> <MODE OPTION>
<SUBTYPEINDICATION> <INITIALIZATIONOPTION>.

From this, the semantic module knows that the items

composing a <PARAMETERDECLARATION> are on top of the stack.

Furthermore, it knows these items have been assembled on the

stack by the parser in the order they were encountered;

thus, the top item is an <INITIALIZATIONOPTION>, and the

other items can be located by their offset from that item.

Now, the appropriate semantic actions for a

<PARAMETERDECLARATION> can be accomplished using the data

assembled in the semantic stacks. Appropriate semantic

actions for a <PARAETERDECLARATION> might include:

- Look up the identifier (stack [stkptr - 41) in the
symbol table and check whether or not it has been
previously declared.

- If it nas been previously declared, call the error
routine.

- If it has not been previously declared, add the
new identifier to the symbol table, and store
semantic data associated with it. e.g. Sec the
identifier's type to 'parameter', and store the
parameter's mode (stacktstkptr - 2]), subtype
(stack [stkptr - 1]) and initial value (stored at
stack [stkptr]) in the symbol table.

58

PROJECT DESCRIPTION

After completing the semantic actions associated with

production 289, SEMANTIC returns control to DOREDUCTION.

DOREDUCTION then removes the five items comprising

production 289 from the stack and replaces them with the

single item <PARAMETER DECLARATION).

2.5.4 Symbol table and visibility

Name visibility is enforced with a compile time

environment stack, stacking rules and special symbol-table

access routines.

2.5.4.1 Environment stack

An entry in the environment stack contains information

on the name of the environment, whether or not the

environment acts as a package visible part, and whether or

not the environment is directly visible. Initially, the

environment stack is empty.

2.5.4.2 Stacking rules

The stacking rules specify which names are to be pushed

on the environment stack and what values are to be stored

with them. These rules assume the existence of two

operations on the environment stack, PUSH ard POP, and of a

global variable used to record the lexical level. Again,

the environment stack consists of 3-tupies which contain the

environment name and two Boolean variables that indicate

whether or not the environment acts like a package visible

59

PROJECT DESCRIPTION

part and whether or not the environment represented by the

entry is directly visible.

PROCEDURE
entry increment the lexical level;

PUSH (procedure name, false, true);

exit decrement the lexical level;
POP until name = procedure name
POP

PACKAGE VISIBLE PART
entry PUSH (package name, true, true);

exit POP until name = package name
REPLACE (package name, true, false)

PACKAGE BODY
entry PUSH (package name, true, true)

exit POP until name = package name K

POP

TASK VISIBLE PART
entry PUSH (task name, true, true)

exit REPLACE (task name, true, false)

TASK BODY
entry increment the lexical level

PUSH (task name, false, true)

exit: decrement the lexical level
POP until name = task name
POP

ACCEPT BODY
entry PUSH (entry name, true, true)

exit POP

Figure 2-13: Stacking Rules

60

PROJECT DESCRIPTION

2.5.4.3 Symbol-table routines

Ada's visibility rules are supported by routines to

enter a symbol, to find a symbol in a named environment and

to find a symbol in scope.

Entering a symbol

Symbols are entered in the symbol table tagged with the

environment in which they are declared. This environment is

specified by a 2-tuple consisting of the lexical level and a

linked list of the environment names on the stack when the

entry is made.

Lexical Level: The lexical level records the number of

static links that must be traversed to reach the main or

outermost textual level. This value is initialized to 0 and

altered only according to the stacking rules.

Linked list: The linked list contains all the directly

visible names stored on the environment stack at the time

the symbol was entered. Since the environment stack is

altered only according to the stacking rules, the list will

contain only subprogram, package, task or entry names.

Finding a symbol in a named environment

The caller provides the symbol's lexical level and the

specific environment to be searched. The routine searches

this environment and returns a reference to the symbol if it

61

PROJECT DESCRIPTION

exists.

Finding a symbol in scope

The caller provides the current lexical level and

environment. The routine successively searches nested scopes

until the symbol is found or there are no more environments

to search. It returns a reference to the symbol if it

exists.

2.5.4.4 Visibility example

These tools comprise a system which supports Ada's

visibility rules. The following example illustrates their

use.

PROCEDURE MAIN IS
CD A : INTEGER;

PACKAGE MAIN I IS *
A : INTEGER;

END MAIN_1;

PACKAGE BODY MAIN I IS *

iMiB INTEGER;
BEGIN

A : 1;
MAIN.A := 2;

END MAIN_1;

BEGIN -- MAIN
[E> MAIN 1.A := A;

END MAIN;

Figure 2-14: Example Program for Visibility Demonstration

Each number on the figure points to a region of the

text where the environment is of interest, and the asterisk

62

PROJECT DESCRIPTION

marks the application of one of the stacking rules. F7or

each number, figure 2-15 illustrates the contents of the

environment stack and all the variables entered in the

symbol table up to that point in the source text. The

example begins at point one, with a NIL environment and no

variables in the symbol table. Each new identifier

encountered in the text is entered in the current

environment, and the environment stack is changed only at

the marked points using the previously-defined stacking

rules.

This concludes the description of the thesis project.

Additional detailed information on the operation of either

the pseudo-machine or the compiler can be obtained by

studying the PASCAL source listing for the system. Appendix

IV contains the listing of the interpreter program, but due

to the size of the compiler listing, it has not been

included. However, copies of &he entire listing are

available in machine readable form on the ARPA net. Contact

the AFIT/EN Mathematics Department for further information.

The following chapter will describe recommendations for

follow-on efforts.

63

RECOMMENDATIONS

CONTENTS OF
ENVIRONMENT STACK VARIABLES ENTERED

ENV NAME PACKAGE DIRECT VIS VAR NAME ENVIRONMENT

[NIL NIL NIL NIL NIL

M MAIN FALSE TRUE MAIN 0 <NIL>

.> MAIN FALSE TRUE MAIN 0 <NIL>
A 1 (MAIN>

MAIN FALSE TRUE MAIN 0 <NIL>
.MAIN I TRUE TRUE A 1 <MAIN>

MAIN 1 <MAIN, MAIN_ I>
A 1 <HAIN,M IAINI >

C MAIN FALSE TRUE SAME AS ABOVE
MAI N 1 TRUE FALSE

MAIN FALSE TRUE MAIN 0 <NIL>
MAIN 1 TRUE FALSE A I <MAIN>
MAIN-1 TRUE TRUE MAIN_1 1 <MAIN>

A I <MAIN, MAIN_1>
M lB I (MAIN, MAIN 1>

E> LAIN FALSE TRUE SAME AS ABOVE
MAIN 1 TRUE FALSE

[MAIN FALSE TRUE SAME AS ABOVE
MAIN 1 TRUE FALSE

[NIL NIL NIL NIL NIL

Figure 2-15: Visibility Rules Demonstration

64

RECOMMENDATIONS

3. Recommendations

As time for the project work drew to a close, it became

apparent that several items on the 'do-list' would not ger

done. This chapter describes these deficiencies and also

describes some areas where continuation efforts could begin.

Since the project is composed of two major parts, the

pseudo-machine and the test compiler, the recommendations

are divided to reflect this. The first section in the

chapter describes suggested improvements to the

pseudu-machine, and the last section describes suggested

improvements to the test compiler.

3.1 Improvements to the pseudo-machine

Known areas where the pseudo-machine can be improved or

expanded include: providing run-time space allocation for

tasks, improving the system queues, improving the allocation

of stack-frame control data, implementing exceptions,

implementing the dynamic-variable-space-access routines,

investigating the effects of Ada's enumeration I/0

requirements and implementing mechanisms to protect data

subject to access by multiple processors.

3.1.1 Run-time space allocation

The current implementation computes a task's space

requirements at compile time. Thus, if a task calls

procedures that recurs.! excessively, the precomputed space

65

RECOMMENDATIONS

may become exhausted. If this is unacceptable for a

particular implementation, consideration should be given to

a run-time space allocation scheme.

3.1.2 System queues

The ready and entry queues in the system are

implemented as linked lists with a pointer to the head of

each list. Therefore, adding a task to a queue requires

traversing the entire list to find the list's end.

Possibly, the queues could be speeded up by adding a queue

tail pointer, but the average queue length could be so short

that this would not be much of an improvement.

3.1 .3 Stack-frame control data 0

The current implementation uses the same stack-frame

control data for tasks as it does for subprogram

activations. This results in several unused words in the

control data allocated to a subprogram. Some space could be

saved by defining a new stack frame specifically for use in

a subprogram call.

3.1.4 Implementing exceptions

Exceptions declared in a block or subprogram must be

allocated space for control information. Data, such as the

names of the exceptions handled within the block and the

location of the handler's code, must be available at fixed

or computable offsets from the BASE zegister. An

66

RECOMMENDATIONS

instruction to carry out the run-time actions of raising an

exception must also be written.

3.1.5 Implementing dynamic variables

No constructs that required dynamically allocated heap

space were implemented. However, when they are, run-time

actions that will be required will include instructions to

load dynamic variables onto the evaluation stack, to store

the top of stack within the dynamic variable space, and to

locate and manipulate data within dynamically created task

objects. Once methods for allocating, loading and storing

dynamic variables and tasks have been implemented,

consideration should be given to deallocation and garbage

collection. However, a minimal system should not require

this.

3.1.6 Enumeration I/O

Ada's enumeration I/O facilities may require the

addition of another data block to the stack frame and the

addition of another register w' which to access it. This

area may be necessary tc -.1 he ASCII representation of

enumeration types declared within the associated scope.

67

RECOMMENDATIONS

3.1.7 Data protection

The data-lock control word was added to the control

data so that access to a task's stack frame could be limited

to a single processor at a time. However, since the

pseudo-machine architecture was simulated on a single

processor, a mechanism for checking and setting the data

lock was never implemented. Currently, none of the

implemented instructions check this word, although several

of them should. In addition to protecting data contained in

a task, the system's ready queue must be similarly

protected. This entire matter requires careful

consideration.

3.2 Improvements to the compiler

Improvements to the test compiler must be based on its

intended use. This section considers two possible uses of

the test compiler: first, as a basis for building a finished

compiler and, finally, as a tool in the development of a

production Ada to pseudo-code compiler.

3.2.1 Towards a finished product

Several compilation tasks were side stepped in this

project because of time restrictions. Four of these areas

include representation specifications, types, overloading

and separate compilation. Representation specifications

specify how types in the language are to be mapped onto the

68

RECOMMENDATIONS

underlying machine (Ref 2 13-1). This issue was not

investigated. Implementation of types was limited to

integers, only. The addition of user defined types wiil

greatly increase the power of the compiler and should not be

overly difficult. However, implementing subtypes and

derived types could be more sporting. Overloading and

separate compilation are two interesting and probably very

challenging areas that will likely have a significant impact

on the structure of the test compiler's symbol table.

Separate compilation will have an additional impact on its

code generation routines and will probably require a

comprehensive linker program.

As the compiler moves closer to completion, more

thought should be given to improving the error tolerance of

the semantic routines and to polishing the grammar.

Currently, the compiler checks for syntactic and semantic

errors until the first error is encountered. From that

point onward, only syntactic errors are checked. Mlore error

tolerant semantic routines would allow continued analysis of

semantics after an initial error. The LR(1) grammar used in

the test compiler's parser was originally obtained from

Intermetrics and has been slightly modified so that it is

more suitable for a one pass compiler. However, since

several productions are unused, the grammar can be

streamlined further. This would result in minor increases

69

RECOMMENDATIONS

in execution speed and in minor decreases in memory space

requirements.

The following deficiencies in the current compiler have

been noted.

- Accept statements: Accept statements for an entry
of a given task may only appear within the
sequence of statements of the corresponding task
body (Ref 2 : 9-7). The compiler does not check
for this restriction.

- Package body variables: Variables declared in a
package body should not be accessible outside the
package. The compiler does not limit such access.

- Initialization of variables: The compiler does
not handle initialization of variables.

- Testing: The compiler program has not received
adequate testing because of time limitations, and
some of the implemented constructs save not been
tested at all. Be assured that there are errors
to be found.

3.2.2 For use as a tool

With minor improvements, the existing test compiler and

pseudomachine could be used as a tool to begin the

development of a production-quality Ada to pseudo-code

translator. The major improvement necessary to make the

test-compiler useful for this purpose is the implementation

of the basic structured types. In this category, records

and one dimensional arrays are almost necessities.

Additional constructs that should be added are enumeration

and access types. With these additions, sufficient power

70

RECOMPPENDATI ONS

should be available to write the new compiler in Ada without

overly limiting one's expression.

When writing the production compiler, the programmer

must deal with the limitations of the host processor. For

example, if the compiler is to run on a small machine, it

must be designed with this in mind. This means that space

saving techniques such as segmentation and multiple-pass

compiler design would probably have to be employed.

This completes the Recommendations chapter and also the

main body of the thesis. Pursuin6 this project has addec4 a

staunch supporter to the growing ranks of Ada enthusiasts,

and I feel that Ada is something that has been needed for a

long time. More power to her!

71

PIPLInCRAPHY

z1 BLIOGRAPHY

BI BLIOGRAPHY

1. Barrett, William A. and John D. Couch. Compiler
Construction Theory and Practice. USA: Science
Research and Associates, Inc., 1979.

2. Defense Advanced Research Projects Agency.
Reference Manual for the Ada Programming
Language, Proposed Standard Document.
Washington, D.C.: Department of Defense, 1980.

3. ------- Requirements for Ada Programming Support
Environments, STONE,1AN. Washington, D.C.:
Department ot Defense, 1980.

4. Fisher, D.A. A Common Programming Language for
the Department of Detense BacKground and
Technical Requirements. Arilngton, Virginia:
Institute for Defense Analyses, Science and
Technology Division, 1976. (AD A028 297).

5. Fox, Joseph M. Benefit Miodel for High Order
Language. McLean, Virginia: Decisions a
Designs, Inc, 1978. (AD A053 032).

6. Harrison, Michael A. Introduction to Formal
Language Theory. Reading, Massachusetts: Addison
and Wesley Publishing Company, 1978.

7. Habermann A. N. and Isaac R. Nassi. "hzr-icient
Implementation of Ada Tasks". Pittsburgh, Pa:
CMU-CS-8C-103, Carnegie-Mellon University, 1980.

8. Honeywell, Inc. Formal Definition of the Ada
Programming Language, Preliminary Version nor
Public Review. Minneapolis: Systems and Researcn
Center, 1980.

9. Ichbiah, J.D. and others. Rationale for the
Design of the Ada Programming Language. New
York: Association-tr Computing Machinery, Inc.,
1979.

10. Institute for Information Systems. PASCAL System
II.0 User's Manual. La Jolla, Ca: IIS, 1979.

11. Myers, Glenford J. Comosite / Structured Design.
New York: Van Nostrand Reinhold Company, 1978.

72

S.,.,~"7

BIBLIOGRAPHY

12. Shannon, Alf-ed. The LR ;suem. FORTRAN source
listing for the LR system. Argonne, Illinois:
National Energy Software Jenter, Version 61,
1979.

13. Wetherell, Charles and Alfred Shannon. "LR,
Automatic Parser Generator and LR(1) Parser. "
Livermore, California: dwrence Livermore
Lagoratory, 1979.

14. Wirth, Niklaus. Al'orit:: + Data Struc-ures =
Prorams. Englewood __ , ew ersey:

Prentice-Hall, Inc., 1976.

15. Wirth, Niklaus. PASCAL S. Source listing for
PASCAL S. Zeurich: InstiLut Fuer Informatik,
1976.

1 APPENDICES

These appendices provide additional detailed

information on several topics. Included in them are a

summary of an early study on the economics of commonality,

background information on LR(1) parsing, a user's guide and

the PASCAL source listing of the interpreter program.

73

Sr "-f
-

.

DOD COMMONALITY STUDY

I. DOD Commonality study

In July 1977, DARPA tasked Decisions and Designs

Incorporated (DDI) to perform a two part effort: first, to

modify decision analytic models to predict the impact of a

common DOD high order language, and second, to implement and

run the models (Ref 5 : 1).

Decision Analytic models:

Three models were used to accomplish this task: EVAL,

which compared 14 attributes of the input languages, SPREAD,

which generates predictive scenarios given data inputs from

EVAL and other sources, and DECISION, which shows the

effects of different decisions given the scenarios generated

by SPREAD and event probabilities estimated by the user.

Implementation:

The table on the following page summarizes the results

of the study.

Each column in the table represents a different

scenario. For example, column I illustrates the effect of

introducing DOD (the generic name for the proposed common

language) in 1980 and achieving total acceptance of the

language by 1985. (Total acceptance is defined as the point

where all contracts for new software are to be written in

DOD.) Programs written in other languages are assumed to

continue tiarouohout taleir life cycles wiiiout re, rite. iEc:n

74

UOD)L C.OMMiOALITY bSTUDY

o4 C;4N 0' N 4 4 O . ONO0

00

I ~ ~ ~ ~ ~ ~ 4 .4 fa na S ow 0 M N . N . 04 S

~~~4~- .44~ M4 O 0 . N N N I

a W

.54

N~~~~~~~ 04NNaN 0 N0 04 . ~ N

ft e4 f

0

Go 00

N lbN N N = NM 0 M S 0.4 a M -'4 Sn

(-44

In

-% -4 --4. - - - to

75a



DOD COA,,10NALITY STUDY

row in the table represents a difterent year as labeled in

the leftmost coluian.

The data in the table represents millions of dollars

saved as compared to a baseline of exclusive use of assembly

language. Thus, any model that considers the use of nearly

any i-OL will exhibit savin6s. For comparison purposvs,

column X models the current situation; tLnt of "no-c.ianse"

in DOD 5000.31 estimate (Ref 5 : 5). are estimated using a

software expenditure of 3.2 billion dollars per year.

The data is provided so that the reader can miaKe his

own conclusions. The author stated that for a 5 year

introduction period, delay of the introduction from 1980 to

19S7 reduces savings by about 1 .5 billion per year. He

concluded with

It is recommended that tne DOD single common iiish
order language be introduced as rapidly as possible
4itnout penalizing technical quality or
acceptability... (Ref 5 3)

76



Ler(1) Mi(L.IG AUTOiLIATWI

II. LR(1) Parsing automaton

An Lu(1) parsin6 automaton is a mnachine tLat can

recodnize any sentence in a particular deterministic

lan 6 ua6 e, and conversely, reject any sentence not contained

in tiat lanuae. ro define the machnine, tine term lanouac

will be defined, and a sample lanuaLe introduced to

illustrate tne operation of tlle maacnine. Then, t[,e

components of the machine and tineir operation aill oe

cescribed.

. lanua;e consists of a collection of symbols, called

an alphabet, arranged accordin6 to a set of rules. Aiesc
rules are called productions, and the collection of all

these rules, or productions, is called a grainmar.

fhe alphabet of the sample language includes only tne

followin8 three symbols : BLEAD, EATS, and JO JU. Tne

production rules whin covern tneir placement are listed

be low.

1. SENJTEJCL : SUBJECT VERB OBJECT
2. SUBJECI" :: JOHN
3. VErB :: EATS
4. OBJECT :: BREAD

(The symbol '::=' means 'is defined as')

This 6rammar consists of four productions. acn

production consists of tdo parts, a left-hand side and a

ridnt-hiand side, separated by the symbol ' . l'he number

77



Lr()PI SL.4 AUTOEIATW~

Of Symbols Oil tne ri,nLtnd side of a production is called~

tace lenc.-i of tniat production. For example, the le n 6 r." of

prodUCtion 1 is 3. 4ote that tnese productions introduce

some new symbols. The symbols SLJTc:JCiE, 6UBJECT, VtXeo and

U BJ &C- do nut appear in tne alphabet of tlie Ian -ua e but:

are necessary to descrioe intermediate reprvsentations of

thle sequence bein, 6 enerated. Also note tnat only onL- if

th1-ese new sym~bols does not- appear on tae ri,;ht-hand side of

d production. This symbol, SEJTE2JCE, is called tne start

syitiuol of the ,rarnmar.

The start symool is a representatxon or all tne W

posoible strinLs that can be ,onerated by the Craimiar. In

tftis case, the start symbol SETELAE is delined as a 6U13.ECf

followed by a VEL,,3 and tuen an oBjECTr. Similarly, a suuject

is defined as JOHLIi, a VEiRB as iEATS anLo an 06JECT as 3Lit JD

There!fore, in this ,rammar, the start symbol represents tne

sin~le strin6 'JOILh' EATS BFEAD'.

To reco -nize a st-rin% in a Ian,ae.teutamnut

reconstruct tfte -particular sequence of derivations tniat

beuan witn the start symbol and resulted in tne strin-,. itL

the automaton accom-iplishes this successfully, thle strinL is

accepted as part Of the lanLua,;e; otnerwise it is rejected.

The machine cont~ains four com(iponents, an input Jevice,

an output dev ice, a memory device and a conrol m.odule.



LR(1 ) PAASIAG AUTOilkTOU

Input device: The input device consists of a tape

containing te sentence to be checked, and a head to read

the tape. The read head scans the sentence from left to

rignt and provides the machine witih one symbol at a time.

Output device: The output device consists of a blank

tape and a write nead. The machine uses Lne output tape to

store a history of the productions used to analyze tne

sentence.

,iemory device: The machine's memory device is a stacK.

Eacn time the machine accesses the stack, it stores two

pieces of iniformation. First, it stores a symbol from tne

0rammar, and then it stores a table or its representation

used to define the macnine's next action. These tao items

are referred to as a data pair in tne rest of this appendix.

Control: The final component to discuss is tne control

module. The control module directs the operation of the

machine's only two functions .hich are shifts and

reductions. It determines 4hich of tLese instructions to

execute by entering the table stored on top of the stack

witA thle next symbol on the input tape as an argument. It

the table indicates that a shift should be done, tne control

unit stacKs the looK-ahead symbol and the table .hose name

is stored witA the shift instruction. It tnen advances tne

read nead to tne next symol on the input tape. It L:1Q

79



L (1 ) PA<SlG lU U'l'OLCULJ

table indicates that a reduction stiould be done, the control

unit qrites the indicated production number on tne oUtput

tape and looks up toe len th of the production. It removes

tnis num ber of datd pairs from toe stack and tioen consults

the uncovereud cale. This time, instead of usin G  tle next

symbol from toe input tape, the control unit uses toe

left-nand side of toe production to enter the table.

ro accomplish snitts and reductions, the control unit

_is-- Kno t1 e productions of the rami.iar and also the

contents r the taUles. Therefore, the structure of te4

control unit must include a representation of this data in

some form. Assume that the control unit Knows the

productions which make up the sample grammar and also tile

contents of tie tables illustrated in the following zigure.

Ac 's -T

.I 'I [

T 1 6 Ta S iFT, T7
F7

is a special symbol indicating 'end of input'

Figure 3-1: Tables for tae LR(1) Parsino, Automaton

rhe imachine beins witll taule TO on te sLacK aou iLn

30



Lrl ) PSING AUTUiLiTO

tie input unit looking at tre first symbol on tlie input

tape. fne m:achine will attempt to recoonize tie sequence of

symabols 'JOKIN EATS rteEAD' as a legitimate strin 6  in tUe

lansuae specified by tnie sample 6 rammar's production rules.

fhe i machine enters table TO with the first symbol, JOuK , and

finds the entry 'shift,T1'. On this shift move, the control

unit stacks tne input symzbol, JOiL, and tne new table found,

rl, and then reads the next symbol, EATS. The current stack

confi uration is illustrated in the followin, fisure.

INITIAL STACK CUt{RLIT STACK

TOP TO

TOP I

(IU ; JOHN 6A'fbREAD ) (Ui ; <JOtiN,T1>; EAr5 dREAD'- ; )A A

Figure 3-2: Result of tae 'Shift, TI' love

The symbols 4ithlin the parenthiesis on tue diaram

constitute an instantaneous description of tie macnine's

state. The symbols before the first semicolon represent ne

items stored on the stack, the symbols bet4een the

semicolons represent the unprocessed portion of the input

tape, and tne symbols after tae last semicolon represent tLie

contents of the output tape. The left-most ,?ord ot tuie

input tape's representation, marked by A in tiie diaoram,

is the j.irser's current looK-ahead token. Collectively,

...T li . .. .. . . . ... . . .. .I1 . . . . . .....: -. . ." i Ii I



L.-(l ) PA.(SI,,AG AUTUiATOJ

these items coMpletely specify tae iiacnune' s current

confiburation.

Presently, the items TO, JOHN and T1 are stacked and

the look-anead token is EATS. The control unit enters taole

Ti witn tthe symbol EATJ and finds te entry 'reduce,3'. Oil

this reduction, tne control unit writes tne number 3 on tue

output tape and looks up the lencth of production 3.

Production 3 is I symbol lon=, so the control unit removes I

data pair from the stacK, leavin, the fol lowin0

configuration:

TOP----- TO

(TO ; EATS bLE,\D ; 2 )

Figure 3-3: Intermediate result of the 'ieduce, 3' ,iove

The control unit enters the table on top of the stack

with the leftuiand side of production 3, which is tthe symbol

SU3J ,CT. It Linds the entry 'shift,T3'. The confiduration

of tue machine after this move is illustrated in th e

following diagram.

The machine continues in this manner until it reacues

'ACCEPT' or it cannot do a transition or a reduction. iL it

reaches 'AccEPT' , tne input string nas been 6uccessailly



Lt 1) P.AeS i:4C AUT 01AA~i.'

TO
S UdJi~iLT

TUP T:3

Kr SU6JELCT',T3> ; "EATS I3R 1AD 2)

Figure 3-4: Final result if '&educe,3' AoIve

parsed and, thuIs, is a )art of the land ua,;e specified by t-ne

,.ramrnar. If t:rhe macn ine cannot do a transition or a

reduction, tace input string is not part of the lan,,uale and

itr is rej ectLeu. Die f o L owjin', liure contLains t-le

instantaneous descript-ions of the machine for every stlep

re,.juired to reconize tae strin~, 'JOhil EAf6 Bi-,ifAD'

TO;JOhN 'A'S 6LKLa AD
(rU, <JOHN, Ti> ; L ATL; 3iEAD )
(TO, <SUeJtECf, Tb> ; LArS bliAD~;2
(TU, <,SU 6J E. , 13>, (EArb, r5> 31bPEAD ;2)
(Tj , <L;U3J ECT, T3> , <VLI 6, 'r> ; RLAD ,2, 3)
iju, (SUb3JELUT, T3>, <Vfr b, T6,>, <6M-LAD, I'7> ; ; "2, 3)
jTU, <SULbjE(l', T3 >, <VERBi, T6> , <06-JECZ, -Tb>; 3 ,3, 4)

Figure 3-5: Acceptance otr-tue Striti %0i14 LATS d~A)

This concludes L," e descridtion of the structure and

operation of an Lr (1) pars LLn, au toutor,)n. A- no U'L izs

operation may seem overly complex, tne auturlaton is 'iei1

suited Lor computer i.plumentation. In tact, such an

dutom'atonl canl De enerated automatically by co*uputer 5 iveri



_ e ramnmar co bQ. parseJ kiw I r~is reazI Lj hiro

rCit! coflscructiVU of comand Ian ,ua 5e iLi compilt ers.



III. User's guide

This appendix JescribeS rale in-put &ccepted L)y tweL teOst

compiler and tnle ouutL-, wni Cn re-sult-s. 6everal e xarip Le

prolrams are also included.

Input: Input t-o t-ae Lrt rai. snoulu be anl .ld Ltat tile

wnus- constructs 'nave been selected t ron ta Li leente

SIuosCt. Lan~ua, e constructs tn atr niay be used to coy-IQoe

input proraas are- listed below.

1. integ~er varia~Ies. zNunuer declaraio,-ns ad

variable initializations are notiplmntd

Cacta~e declarations.

3.Proceaures and functions w.itan parameters (~u
types :naya: be specitt-ed)

4. TasK seclarations.

5. selected components may oDe used to opeL2n
visioiLity to0 oujects taat are winnscope out
whica are not directly visibl.)L

u. h-ost itnte, er aritametic or ouoolean expressions
,may be used inciudin, tnose sigsnort circuiL
cuonditions. however, tu;e tollowin% liSt i.t
operators hias not been implem;ented: ~~ '

7. Tne followin, statemi-,ents may be used:

a. Assi,-nment:

D. Procedure, fanctron or entry als

c. TZx'iL



ADOAlOO 796 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/6 9/2

I PRELIMINARY DESIGN AND IMPLEMENTATION OF AN ADA PSEUDO-MACHINE. (U)

I MAR 81 A R GARLINGTON
UNCLASSIFIED AFIT/GCS/MA/8lMI1N

"ED



USLA'6 GUID.E

III. User's guide

This appendix describes the input accepted by tae test

compiler and the output which results. Several example

programs are also included.

Input: Input to tne pro6ram should be an 4da text file

whose constructs have been selected from thie implemented

subset. Language constructs that nay be used to compose

input proframs are listed below.

1. Integer variables. Number declarations and

variable initializations are not implemented.

2. PacKage declarations.

3. Procedures and functions with parameters (mode
types may be specified)

4. Task declarations.

5. Selected components may be used to open
visibility to objects that are within scope but
which are not directly visible.

6. Host integer arithmetic or Boolean expressions
may be used includin; those using short circuit
conditions. However, the following list of
operators has not been implemented: REM, , &,
IN.

7. The followin- statements may be used:

a. Assignment

b. Procedure, function or entry calls

c. Exit

d. Return

e. IF TH ll ELSIF LLSE

85

iA



USER'S GUIDE

f. Accept

". loops (except FOL loop)

Output: The output of tile program is dependent on a

specially defined pra;ma. This pragma Qas added to allow

more direct control of tie program throughout its

development. its format is:

PRAGI-LA TOGGLE ( <OPTION STI1G> ),

where <OPTiONST&L2G> is composed of selections froin tie

following list of options: EXELUT , TRACESTORE, PRI:1:CUDE,

£rACEPA&SE, ThACETOK. Multiple selections must be separated

by commas.

All of these options are initially off. To select an

option, list it in an option strin6, and the compiler's

output will be as defined below:

EXECUTE: If no errors are detected in the input

program, tae proram will be executed.

TRACESTURL: TRACESTORE will do nothing unless EXECUTE

is also selected. If EXECUTE is selected, each value stored

during the execution of an IsToKE or ENTISTORE command will

be printed.

PRIL'ODE: The code .,enerated by the compiler is

torrnatted and printed.

,36



USER'S GUIDE

TRACEPARSE: Each transition or reduction made bJ he

parsing automaton is printed. This listing is fairly long

even for a short program.

TRACETOK: The representation of each token passed from

the scanner to the parser is printed. This represen:t:aion

consistb of the token's vocabulary index as output fro- The

automatic parser generator (Ref 13).

The following examples illustrate the effects of select-

ing these options given a simple input program.

ADA-G COMPILER
AIR FORCE INSTITUTE OF TECHNOLOGY

1 -- THIS EXAMPLE ILLUSTRATES THE COMPILER'S OUTPUT JaTH
2 -- NO CONTROL INFORMATION.
3
4 PROCEDURE MAIN IS
5 A : INTEGER;
6 BEGIN
7 A :-3;
8 PUT (" A -
9 PUT LINE (A);

10 END MAIN;

ADA-G COMPILER
AIR FORCE INSTITUTE OF TECHNOLOGY

1 -- NOW THE SAME PROGRAM IS INPUT TO THE COMPILER WITH
2 -- THE EXECUTE OPTION SELECTED.
3
4 PRAGMA TOGGLE (EXECUTE);
5
6 PROCEDURE MAIN IS
7 A : INTEGER;
8 BEGIN
9 A :-3;

10 PUT (" A-
11 PUT LINE (A);
12 END MAIN;

A" 3

87



ADA-G COMPILER
AIR FORCE INSTITUTE OF TECHNOLOGY

I -- OPTION PRINTCUDE PRINJTS 'tiE CODE GENERATED 3Y TIE COMPILER
2 -- FOR THE INPUT PROGRAM. THIS OPTION IS SELECTED IN THIS
3-- EXAMPLE.
4
5 PKAGMA TOGGLE (PRINTCOOE);67

8 PROCEDURE .AIN IS
9 A : INTEGER;

10 3EGIN
11 A :- 3;
12 PUT (" A - ");
13 PUT LINE (A);
14 END MAIN;

*** PRAGAA PRINTCODE *

INDEX itiEMONIC LEVEL ADDRESS
0 JMtP 0 I
1 INCT 0 18
2 ILOADCONST 0 3
3 [STORE 0 17
4 SPUT 0 5
5 DATA 0 32
6 DATA 0 65
7 DATA 0 3Z
8 DATA 0 61
9 DATA 0 32

10 ILOAD 0 17
11 IPUT 1 0
12 RETURN 0 0



1 -- NOW THE TKACESTOkE OPTION IS SELECTED.
2 -- THIS OPTION WILL PRINT THE VALUE STORED DURING THE EXECUTION
3 -- OF THE ISTORE INSTRUCTION (INSTRUCTION NUMBER 3 IN THE PREVIOUS

4-- EX4PLE.
5
6 PRAGMA TOGGLE (EXECUTE, TRACESTORE);
7
a
9 PROCEDURE MAIN IS

10 A : INTEGER;
11 BEGIN
12 A:- 3;
13 PUT C'A -
14 PUT LINE (A);
15 E D MAIN;

*** PRAGMA TRACESTORE *

EACH VALUE STORED DURING EXECUTION OF AN ISTORE COMMAND IS LISTED

3
A" 3

ADA-G COMPILER
AIR FORCE INSTITUTE OF TECHNOLOGY

I -- NOW THE RATHER LENGTHY OUTPUT GENERATED BY THE TRACEPARSE
2 -- OPTION IS DEMONSTRATED. EACH TRANSITION OR REDUCTION
3 -- MADE BY THE PARSING AUTOMATON IS PRINTED. TU LIMIT THE
4 -- LENGTH OF THE OUTPUT, A SHORTER PROGRAM IS INPUT AS FOLLOWS:
5-
6 -- PROCEDURE MAIN IS
7 -- BEGIN
8 -NULL;
9 -- END MAIN;

10 --

11 -- AS YOU WILL SEE, THE PARSER IS VERY BUSY EVEN WITH A SIAPLE
12 -- EXAMPLE LIKE THIS.
13

89 - 4



14
15 PKAGi-A TU,;GLE (TRACEPARSE);

PRODUCTION 1.3 rAND TRANSITION FROi4 STATE 2 TO STATE 7
TRANSITION FRON. STATE 7 TO STATE 41

16
17 PROCEDURE -LAIN IS

PRODUCTION 16 AND TRANSITION FROM STATE 2 TO STATE 8
PRODUCTION 15 ,1D TIRNSITION FROM STATE 2 TO STATE 9
PRODUCTION 385 ..iD TRAINSITION FROM STATE 9 TO STATE 46
PRODUCTION 371 .,ND TRANSITION FROM STATE 2 TO STATE 6
rRANSITION FRUOi STATE 6 TO STATE 18
PRODUCTION 274 .ANJD TRANSITION FROM STATE 6 TO STATE 34
ThANSITION FAU. STATE 34 TO STATE 11
PRODUCTION 8 , TRANSITION FROM STATE 34 TO STATE 113
PRODUCTION 280 iJD TRANSITION FROM STATE 34 TO STATE 112
PRODUCTION 440' AND TRANSITION FROM STATE 6 TO STATE 35
PRODUCTION 284 AND TRANSITION FROM STATE 35 TO STATE 116
PRODUCTION 282 ND TRANSITION FROM STATE 116 TO STATE 207
PRODUCTION 275 -ID TRANSITION FROM STATE 6 TO STATE 37
PRODUCTION 271 ND TRANSITION FROM STATE 6 TO STATE 38
TRANSITION FROI STATE 38 TO STATE 117

18 6EGIN
PRODUCTION 276 AND TRANSITION FROM STATE 6 TO STATE 39
PRODUCTION 25 AND TRANSITION FROM STATE 39 TO STATE 119
PRODUCTION 441 AND TRANSITION FROM STATE 6 TO STATE 40
TRANSITION FRO4 STATE 40 TO STATE 104

19 NULL;
PRODUCTION 204 AND TRANSITION FROM STATE 104 TO STATE 195
TRANSITION FROM STATE 195 TO STATE 313
PRODUCTION 219 AND TRANSITION FROM STATE 195 TO STATE 333
PRODUCTION 208 AND TRANSITION FROM STATE 195 TO STATE 340
PRODUCTION 202 AND TRANSiTION FROM STATE 104 TO STATE 197
TKANSITION FROM STATE 197 TO STATE 341

20 END MAIN;
PRODUCTION 200 AND TRANSITION FROM STATE 104 TO STATE 198
PRODUCTION 259 AND TRANSITION FROM STATE 198 TO STATE 343
PRODUCTION 258 AND TRANSITION FROM STATE 40 TO STATE 120
TRANSITION FROM STATE 120 TO STATE 209
TRANSITION FROM STATE 209 TO STATE It
PRODUCTION 8 AND TRANSITION FROM STATE 209 TO STATE 113
PRODUCTION 280 AND TRANSITION FROM STATE 209 TO STATE 351
PRODUCTION 279 AND TRiNSITION FROM STATE 209 TO STATE 352
PRODUCTION 277 AND TRANSITION FROM STATE 6 TO STATE 36
PRODUCTION 378 AiVD TRANSITION FROM STATE 6 TO STATE 20
PRODUCTION 380 AND TRANSITION FROM STATE 6 TO STATE 24
PRODUCTION 372 AND TRANSITION FROM STATE 2 TO STATE 4
TRANSITION FROM STATE 4 TO ST.T- 13
PRODUCTION 4 AND TRANSITION FROM STATE 2 TO STATE 5
PRODUCTION 3 AND TRANSITION FROM STATE 2 TO STATE 10
TRANSITION FROA STATE 10 TO STATE; 48

90



6OURCIE LISTI'IGI

IV. Source listing

91



-~-4
~ 74

E-4 .--

Ic3 Z'4 a : 4 LE4  -Ow

3 .- zn -0:

3 r -.3 X

3 - -:3 0 -<4
E-4

14 -'14 ~ 3>4 1 -3

'34 xZz3 -44 Zi 3
V) :n>~ al 3~ od .- 4

z <-1. = ~ - E--4Z 7-

:9- A 0-4 I if --) -'
a] )--d4 ~'~ -

-3 34- 3 3 4 IIn a

33~~ :3~--u -4 >4<4 =3 -l

~-4'-it wn-~ Z ;-4 -A4~
C

4
4 77;. fly :nQ

~~~~<~4 >4c~ ifi - 4Z o~ ~
E-~ uif A4 :A 0l ~ 3 ~

3 ~ ~ ~ Z - C- A f-Z *4 4 -4c

A A -4

CL al -'AID E--3-<4< < 3A 3

1-4 :A --3 I-) OL 30',~
w3 J) Z- -44. '-t 00- >0 -

n o % 3 'f:4 1f-3 (a3
Z -3~ A3J *...-. 04 -4) 11 11q

:;J-4-.J /0 ~ Z Z W J Y

- -X -~r -3 -)~ - - 4- N e

-F-

1-4

> --43

S- 14 :z -4

Ac A >3jZ

Z- 12"C-
0 --4

?-4 4
j- Z <~ :M3

--4 44 :D 0- :_,-_~ ~ -4 3 Az2P H4
-44J -4 3Z H <-

z2.4E-4H >4
01 =~ :J -4 -4

-- 4 z. z c -

> >-4 4

-4 ~-4-A4- 4 ~ :1 - Y.-
H2U a< -1 --C i-. - :n3

aj -j 3-4- :1LL-4

el '=.- Ht - -- j :
:1 4 -4 Z 0~ 0 3+

0 ./ a] Z / 4 -% 3 -4~
-~ ~ ~ - 3 4 Z Z *- -

'74 j al ' :2 -4-.. E-4 43 F-

Aj 1-- :: /2L< '-4 <2 -:,I H
-4_ . 3 6-4 ~ x a3 :L3- .)Z Hn q -.4

n '4 4 7: NZ ~ t 'P.-- - -~ :n F4 :n o l 4
z 7z a4 nz 2w 1-Z 11 -t 3 + ~~

.~~~~~~~2~~- -421 tZ4 ' ~ 2 - Z . 2 ~ ~ .

3n no .0 "' Z. 4 a 4nM 1 3:
V 1H :c :4 -4-. a. *L ta -:

/24 7m- >K =.-4 * a4 >- -I.. -- cZ 3 --)4
-4.- .4 -a <J laZ nZ t42 m -4 -j

EA :X4 -. 3 Z >'C4 32 r :. . j A -Y &-z A< .1II * -4 :,J

z j - t4 Z)J -4 -4 H0

23A

-4

-4

-4 -4 Y

z *- -

E-4 l4

72 u

-t A E-. :n

<A- 04< 2.

HQ -KLI

A A 14 :- :.
>D 4 - -

D' .4~- u -.

-40 721-4 ME0

-4> oA . Z 72-

cl =~4 -14 ")- Z - - 1

04 :0 A 4)M J.

72 -4 1-44 :- -n
44 04 AZ -1

0Z -4 < -4 .4 .A4 !:J
724 -4 E-

:3: M z
-_- :D <4

:0 0 *-T-M0 4 cl-

- - - - - - - - - - - -

40< 12

-4-

-4~

j-4 4c 0.

-44-

>4-

-~~- '1 -

-4 +.r4:4 .s c0 >1:
;-4< 4c: =~ ~ :-:4 2 1

-.- 0 4 -4 '12'
-i2 >4 E-4 0) 0 L>

'.si2- !L3 :4 -- 4 0
J M 0 -- e :4:

:3 -3 -- -<- 'Z= I7

05-'

z0 -Z M' ~>4V- Z Y. 00 4

-- E0 j- .4E4 ~ 2

**--- .04> 4cJ m -z .x 3
z n2 * 10 +3'-4 >4 7 Y3: ~ t :z-2. <Z - 4 -

-4n a3 -4-~ -W4 - j
:Z4~ W- n- Z2 - Z ~ +~ 2 .0

0 ~ 2 ~4~. aII Z~2.2~-4 >2ow

Z ~ ~ ~ (+- '. ZHT .'D-4 W2 *
- -- 4-4:4 N:1 q'N N:4 1:n-1e ll (1 r -1 -/HHr0 ' "r . T -lt -n

S-- -

+

Z-4

>0

C-44JAJ

- ,-. -.-_

:Y4 a. :-

>4 a3

j . . . 4. E-.4

I! I!1-". 'J:' - U :7

-47 CC -D -

-I - 'n J, L-1

:0 - -4 . .'A :] 2i

123A -4-- . 4
2

-

C -4fl C -34-2

n4 -I-~ .- TZ n~ 'o-N- -C- 4 "

--±--- ------- -I --

7-44

N 4 D

lm3~ 34

:-4 -4
-- + .

-4 - -4

-4

U4 :.- :4 .3 -l
<< >4 -4 U- :

4' : -4 7) :L.
-4~ 4 .- 4 "o

Z-4 E-4 Z--

-~ ~ ~ - LJ 4 l. '-4 '-

~ 4

--4 L-4 .

4-4L. -4 :4 -

-7 ~ ~ 4 j-4 +- -.. Z-35-
-- Z.: -1> 4 - ')-4

.3. 4 dj-- 4-4.. ::3 -

L- 4 .4

- ~ 1 4 :a a4 >4 .II c - A -
4, --4 . 4j4

U-.3 al :r- -4 IC ::I a. 7 :

'ZU -1 Y. -A f *. 4 -Y. Z* U 4 >-

If * -. 3 -3 - . - Qfl-' 0 Z 0<4~ F-4 --44-C

- z 3 -11 . D 3 - - :<Z Z ~ aU~..2 '. 7= X

U4 -44 1-4 'S2 <4a :2 - -J -- I

p -4

- -- - -- - - - - -4 -N + l 4 - 4- - 4N:1- 4N:

-4 -

i-l 0

, -4

A A~fl4-4

LoZ Z

*-~zzz. 1.4 C:4 .44

. -4 -4O Z - Z <

:-- .* .. ~ l ~ * C I
-:- lii F41 -C f - *-

:a ~ -4 tz :]J Z.' :j :0- -Z .JZ . 14
7) / As-] S-4+f -3CZ. C414 -> E- -OAO.
al~~~ 4t : - -'a 71<A .:

t-4 H ~ ~ Z Z :-q

C~A - -- **E'c-

t) Z 4 o l 1 10 E 1)

>4 j Z3 mat I 11 r'r:-4C~ '.:Z 3 % ifN
--- ctNN NNNN N) =N N >4 NN N NN N N

-- 4 -4 t4 4< :J 4 -j- j --

A ~

>44

-4 -:

4. >4.L.:-

~A -%

-44

C E-. 4 E44

E-4 C- 4

!J 7Z 0 4 'Z * 4 LJ

-4 =- :n 4 :J2- U-+ .

:n A4 -4-4 CL. :J.

-= -4
:& < r- A-4 C" :3+ 77

+ -J Z 4

~~-4:- E-4 J>4 -< >4
Z34 "4 -E-~,4 -e3 -3 E-4 ce -

>4 -j 34: -'= c <~ +a

a3 --. ::3a4 -ct
A~-'. - t.) C !J -44 A L>

Ii4 -4 4 "ZC *!1 4+ ' -4 % An0 cw

-3 S- 'J S-~ E- 44 : -4 <4 2. CL 4 7

0n0 T zE~t --4 -z- 74 --! C-Ic i.4 Aa i-V4A
C~~~e 'n + C-- E-. a..'4: Z C ZA C C

+ i <4 C.- n. A >4' :J 4fl- - i xcC CwJ

:0 a.A + -4- --1 5~. -3 -- C0
-Y 1-),' 04 0 OC iC E-4 -d --

7C %44 W C6 44 CL, C 44E- 4A 0Z- - .
:AZZ : - !ri q-c >4 >4 t4~ 4C

A ~ 4~~-4A 4 404 4~caO.

A~~~~- :-Z A-.C- :-..C ~0 -4 .
-4~~t -4 WA~ m4 M lf - a C 4 Iii.A-J

A J ++ -4Z4 --4 rjic C4 '-4 W: AZ :A *.:t
-1 -X qt4 ' -x

-4 - -4 CN ^4N-4 C4 -4N NAA A4 N N1 1 C 1 4 N 1 A-4 - - - -

--- 4Z-.~-4 44C -'~. -i ~ ZZ-'M INA.

-t-

>4a

-30

L, 6-4 -V

Ak 4-
w -x 4c

7= + -1)2 40-
4 4 Ln U-

_j IN i 4 .

-4 E-
-. U Z) - if 7

-4 Y. .-

W-d4- .5 x~

~j4

'-4 64 -4:- :4 :4 IC* HD

4 E-0 <~ 0X 4 :

-:4 Z-) -4) -4 z~-~

-2 + .2 - - -4 +

4 C :U' -4 **-- Z4. -

I~~~~ -J4
4 2 6.L L- ++ +1J2 '.4z31~

4c- :u.J 4 L ic Q-M 7:"1 1

-2 4~ ~ Z..,-4 -- A11.2 -li 4

-~ z- '. 4 4 -. 4 -*- -J - 4 I -T

-4)

-Ic +

4t

E-4

:n:] -

Z'I ~ :: 0 -L

14-.

',. -4 -t 0
2S-4 --%.1 04. ~

a-4 lo E-

~~~~~~~- 4. E -4 : 4: 4

= :D Y :40 + n -

7:9 = n, W 4"j - -

- . %.o -4Z 0Z- ) F-4-c -L4

"1 *'*1~- n%~ cn In en -n 1)- n. -- n



.011

:Z4

A -,

--4
4- --

-4. 4

+ +': '

•4 --4

- - - .. --

.' . ."." . . . .q ."".. . .' . ... +,4

"-A .A- € .. - I --

A . . .. 4 "- --4 "& E

w- --, s 2 )-- - - - - - -

-A.' - - '- .. "- <
TJ }€ ' :: '- '- -,- - ",- ,- ,.- ,- - ' ,'-.,It ..;4 ,- -, -I . "--4

" + " + "" ++ ++ ++ + ' 0 "-.-

-, ", l ",--ItO -'**..-.Il *.* -_. ..-4

~~-J .. u**>'-'--- r)",'3:4 } :):I , J} ' I - -a-

-" - 1 ,' ' ," 4' ," . ** ' , , ' ' :" -, 4 ," , Z .' " 0 T -.



- n A

E-

7n -4 - -

-4 -4 +-

ol L- +
-Y. . +

- -



+

V La

E-4~

A ~ ~ -NA -i0i

0 ~ z -4-

E-4 4
-4 :~z4 -j.

C-4 A 4 -4i

II -4 --4

E- C4-

Lo :n - - E-!: 7

II- '4 A-
ad -r

.. L.1 P- __

M L 1 a10%a10 o o 3 o l lr r r zozo:0 1 L so;3-, z 3 -



i-

V -- 4

-'- 4J7 - --tA 4a
0-4 :12 o 4 4 j ): A

4 -Z 094C4=C~ - -

:Y z'- W " ' W

-n0 0z n 7) 4 ~ a
tn- ,4 0

PE-4

t-4 0- 3

~~4% fl- .a4 -os 0 -4.-.:4 Z2
0~c 4% 0 0CO4<n

- - -4 - -i z - 44- --
T IT IT ~ ->o Ln n LM~ LM LnL ML %6 iV nLnU ' nL n L M 4 U nk , i nL



-4-

11 1

-~-4

H4 -1- itar Z-N0 :4
U- - n m- l6nUN. DS D

LnLALMnL t L L L l n m ~lVi - V 'N n 6 -ML nUn flv N-Nti -n L



a3

3 +

0
z cn

z XI 04

0 E-40

10 DO
0z :; w II4

u o. Ul4 z w I
al 0 04 Z

IfW -00 /-N:4 zx c

~ ~J~l2 Z~-4E4

~~ 00 ~ wa.. .

:40... 0 0 0n

iI CA] WZ W f

01 -4 %~ -, PJ 5 5 ccz
VE4Z a., M z0 Z -A Z 4

-0. Od ,-4 H i-4

Z ~O - -4 06 WL43
H3 E-4 M.. W*w

z% U4 -j E-4Q-C]

4c~-~-' ~ r2 0-] 0-

C4 T a or,-0 7%0N2 -t 0 n 0 0O as 0

r-r-r-2H r rC].)-~ P-. P.w o w00c ww wa 2O
LnL ML n ~ nL n C nnk r ' nL L l r l

0 CR2



VITA

VITA

Alan i . jarlington was born on 20 August 1951 in

Chicopee, Massachusetts to Arthur K. Garlington, Jr. and

Claire Y. (Cournoyer) Garlington. he attended inigh school

at Rome Free Academy in Rome, New York and ,raduated in

1969. In June of that year, he entered tne USAF Academy in

Colorado Springs, Colorado and subsequently gradudted jit-t a

Bachelor of Science Degree in Electrical Engineerin, in June

of 1973. his first Air Force active duty assignment 4as to

Under raduate Navigation Draining at :Xlatner AFb in

Sacramento California. tie raduated in April of 1974 and

entered Electronic Warfare Training, also at '-lather. Upon

graduation from Elecronic Warfare Training in October of

1974, he was assigned to the 62nd bombardment Squadron, 2nd

Bomb Jing (SAC), at Barksdale AFB, Louisiana. In March 1973

ne was assigned duties as win, electronic warfare officer

where le served until entering the Air Force Institute of

Technology School of Engineering at Wright Patterson i fB,

Ohio in Sept 1979. he is a member of Tau Beta Pi and Eta

Kappa Nu.

Capt Garlington was married on 29 December 1973 in

Rome, New York to Pasklualina J. OiAarco. They have one son,

Christopher , lan, who wa6 born on 12 September 1979.

Permanent address: 6623 Williams Road
Rome, New York 13440

108

V



SECURITY CLASSIFICATION OF THIS PAGE (Whe Daet Entered)

REPORT DOCUMENTATION PAGE IREAD INSTRUCTIONS
R BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO., 3. RECIPIENT'S CATALOG NUMBER

AFIT/GCS/MA/81M-l '

4. TITLE (ad Subtitle) S. TYPE OF REPORT & PERIOD COVERED

PRELIMINARY DESIGN AND IMPLEMENTATION MS THESIS

6. PERFORMING 01G. REPORT NUMBEROF AN ADA PSEUDO-MACHINE

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Alan R. Garlington
CAPT, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Department of Mathematics

AFIT/EN

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

March 81
13. NUMBER OF PAGES

118
14. MONITORING AGENCY NAME & ADDRESS(If different from Controll n' Office) 15. SECURITY CLASS. (of his report)

IS8. DECLASSIFICATION, DOWNGRADING
SCHEDULE

I6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetroct entered in Block 20, If different from Report)

*2 A0 
3

IS. SUPPLEMENTARY NOTESA.
APPROVED FOR F2SFL;_ FEL'ASC AFR 190.17LIJ41C

Air Foice Ins'itte of TchAioicy (ATCT FREDRIC C. LYNC , ajor, USAF

Wright-Patterson Afb, 0II 4 33 DiO cc4'. of Public Affairs

19. KEY WORDS (Continue on reverse side if neceseary ad identify by block number)

Ada Pseudo-machine
Compilers
Computer Programs
Microcomputers
Minicomputers

20. ABSTRACT (Continue on reverse olde If necessary ad identify by block number)

1This project involved defining an Ada pseudo-machine and developing an

Ada to pseudo-code test translator. The translator's front end incorporates
a table-driven parser that can parse the entire proposed-standard Ada language.
The translator's semantic routines allow integer data objects, several control
structures, procedures, functions, packages and tasks. These routines generate
pseudo-code that is executed by an interpreter program included in the
translator. The interpreter constitutes a complete description of the pseud-

ID I 1473 EDITION OF I NOV 55 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)



SECURITY CLASSIFICATION OF TMIS PAGE(Whm Doe Enter.d)

BLOCK 20 continued:

machine whose architecture consists of multiple, st.ck-oriented proce.3sors
that access a common memory. Interesting features of the project include
the hash-coded symbol table that supports Ada's visibility rules and the
pseudo-machine architecture that supports Ada's tasking.

SECURITY CLASSIFICATIOR OF AZ;E9
4 

,e, O'.to E,

4. .



A


